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Introduction 
 

Access to radiometals suitable for labeling novel 
molecular imaging agents requires that they be 
routinely available and inexpensive to obtain. 
Proximity to a cyclotron center outfitted with 
solid target hardware, or to an isotope genera-
tor for a radiometal of interest is necessary, 
both of which can be significant hurdles in avail-
ability of less common isotopes. Herein, we 
describe the production of 44Sc, 68Ga, 89Zr, 86Y 
and 94mTc in a solution target which allows for 
the production of various radiometallic isotopes, 
enabling rapid isotope-biomolecule pairing op-
timization for tracer development. Work on 
solution targets has also been performed by 
other groups [e.g. 1, 2]. 
 
Material and Methods 
 

Solutions containing a high concentration of 
natural-abundance zinc nitrate, yttrium nitrate, 
calcium nitrate [3], strontium nitrate or ammo-
nium heptamolybdate [4] were irradiated on a 
13 MeV cyclotron using a standard liquid target. 
Some of the solutions contained additional hy-
drogen peroxide or nitric acid to improve solubil-
ity and reduce pressure rise in the target during 
irradiation. Yields calculated using theoretical 
cross sections (EMPIRE [5]) were compared to 
the measured yields. In addition, we tested a 
thermo-syphon target design for the production 
of 44Sc. Chemical separation of the product from 
the target material was carried out on a remote 
apparatus modeled after that of Siikanen [6]. 
 
Results and Conclusion 
 

The proposed approach enabled the production 
of quantities sufficient for chemical or biological 
studies for all metals discussed. In the case of 
68Ga, activity up to 480±22 MBq was obtained 
from a one hour run with a beam current of 7 
µA, potentially enabling larger scale clinical pro-
duction, see Table 1. Considering all reactions, 
the ratio of theoretical saturation yields to ex-
perimental yields ranges from 0.8 for 94mTc to 
4.6 for 44Sc. The thermo-syphon target exhibited 
an increase of current on the target by a factor 
of 2.5 and an increase in yield by a factor of five 

for the production of 44Sc. Separation methods 
were developed for all isotopes and separation 
efficiency ranges from 71±1% for 94mTc to 99±4% 
for 86Y. 44Sc, 68Ga, and 86Y were successfully used 
in labeling studies with a model 1,4,7,10 – te-
trazacyclododecane - 1,4,7,10 -tetraacetic acid 
(DOTA) chelate, while 89Zr coordination behavior 
was tested using desferrioxamine-alkyne (DFO-
alkyne). 
 

Reaction Asat 
(MBq/µA) 

Atheo
sat 

(MBq/µA) 
Atheo

sat 
/Asat 

44Ca(p,n)44Sc 4.6±0.3 21.1 4.6 
syphon target 
68Zn(p,n)68Ga 

8.4±0.3 
141±6 

21.1 
207.3 

2.5 
1.5 

86Sr(p,n)86Y 31±1 52.5 1.7 
89Y(p,n)89Zr 360±9 540.9 1.5 
94Mo(p,n)94mTc 40±6 32.2 0.8 

TABLE 1. Reaction, experimental saturation yield 
Asat and theoretical saturation yield Atheo

sat for all 
investigated radiometals. The production of 44Sc 
in the syphon target is preliminary (n=2). 
 

In summary, we present a promising new 
method to produce a suite of radiometals in a 
liquid target. Future work will continue to ex-
pand the list of radiometals and to apply this 
approach to the development of various pep-
tide, protein and antibody radiotracers. 
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