2,790 research outputs found
Tardos fingerprinting is better than we thought
We review the fingerprinting scheme by Tardos and show that it has a much
better performance than suggested by the proofs in Tardos' original paper. In
particular, the length of the codewords can be significantly reduced.
First we generalize the proofs of the false positive and false negative error
probabilities with the following modifications: (1) we replace Tardos'
hard-coded numbers by variables and (2) we allow for independently chosen false
positive and false negative error rates. It turns out that all the
collusion-resistance properties can still be proven when the code length is
reduced by a factor of more than 2.
Second, we study the statistical properties of the fingerprinting scheme, in
particular the average and variance of the accusations. We identify which
colluder strategy forces the content owner to employ the longest code. Using a
gaussian approximation for the probability density functions of the
accusations, we show that the required false negative and false positive error
rate can be achieved with codes that are a factor 2 shorter than required for
rigid proofs.
Combining the results of these two approaches, we show that the Tardos scheme
can be used with a code length approximately 5 times shorter than in the
original construction.Comment: Modified presentation of result
Multicanonical Study of the 3D Ising Spin Glass
We simulated the Edwards-Anderson Ising spin glass model in three dimensions
via the recently proposed multicanonical ensemble. Physical quantities such as
energy density, specific heat and entropy are evaluated at all temperatures. We
studied their finite size scaling, as well as the zero temperature limit to
explore the ground state properties.Comment: FSU-SCRI-92-121; 7 pages; sorry, no figures include
IoTSan: Fortifying the Safety of IoT Systems
Today's IoT systems include event-driven smart applications (apps) that
interact with sensors and actuators. A problem specific to IoT systems is that
buggy apps, unforeseen bad app interactions, or device/communication failures,
can cause unsafe and dangerous physical states. Detecting flaws that lead to
such states, requires a holistic view of installed apps, component devices,
their configurations, and more importantly, how they interact. In this paper,
we design IoTSan, a novel practical system that uses model checking as a
building block to reveal "interaction-level" flaws by identifying events that
can lead the system to unsafe states. In building IoTSan, we design novel
techniques tailored to IoT systems, to alleviate the state explosion associated
with model checking. IoTSan also automatically translates IoT apps into a
format amenable to model checking. Finally, to understand the root cause of a
detected vulnerability, we design an attribution mechanism to identify
problematic and potentially malicious apps. We evaluate IoTSan on the Samsung
SmartThings platform. From 76 manually configured systems, IoTSan detects 147
vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a
previous effort. IoTSan detects the potential safety violations and also
effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201
Frustration - how it can be measured
A misfit parameter is used to characterize the degree of frustration of
ordered and disordered systems. It measures the increase of the ground-state
energy due to frustration in comparison with that of a relevant reference
state. The misfit parameter is calculated for various spin-glass models. It
allows one to compare these models with each other. The extension of this
concept to other combinatorial optimization problems with frustration, e.g.
p-state Potts glasses, graph-partitioning problems and coloring problems is
given.Comment: 10 pages, 1 table, no figures, uses revtex.st
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the
construction and characterisation of Micro Pattern Gaseous Detector (MPGD),
with particular attention to the realisation of the largest triple (Gas
electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the
CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of
about 0.5 m2 active area each, employing three GEM foils per chamber, to be
installed in the forward region of the CMS endcap during the long shutdown of
LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM
foils that are mechanically stretched in order to secure their flatness and the
consequent uniform performance of the GE1/1 chamber across its whole active
surface. So far FBGs have been used in high energy physics mainly as high
precision positioning and re-positioning sensors and as low cost, easy to
mount, low space consuming temperature sensors. FBGs are also commonly used for
very precise strain measurements in material studies. In this work we present a
novel use of FBGs as flatness and mechanical tensioning sensors applied to the
wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used
to determine the optimal mechanical tension applied and to characterise the
mechanical tension that should be applied to the foils. We discuss the results
of the test done on a full-sized GE1/1 final prototype, the studies done to
fully characterise the GEM material, how this information was used to define a
standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste,
Italy). arXiv admin note: text overlap with arXiv:1512.0848
Development and performance of Triple-GEM detectors for the upgrade of the muon system of the CMS experiment
The CMS Collaboration is evaluating GEM detectors for the upgrade of the muon system. This contribution will focus on the R&D performed on chambers design features and will discuss the performance of the upgraded detector
Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC
Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward
muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first
implementation is planned for the GE1/1 system in the region of the muon endcap mainly to control muon level-1 trigger rates
after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by
3,072 radial strips with 455 rad pitch arranged in eight -sectors.
We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and
tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO 70:30 and
the RD51 scalable readout system. Four small GEM detectors with 2-D readout and
an average measured azimuthal resolution of 36 rad provided precise
reference tracks. Construction of this largest GEM detector built to-date is
described. Strip cluster parameters, detection efficiency, and spatial
resolution are studied with position and high voltage scans. The plateau
detection efficiency is [97.1 0.2 (stat)]\%. The azimuthal resolution is
found to be [123.5 1.6 (stat)] rad when operating in the center of
the efficiency plateau and using full pulse height information. The resolution
can be slightly improved by 10 rad when correcting for the bias due
to discrete readout strips. The CMS upgrade design calls for readout
electronics with binary hit output. When strip clusters are formed
correspondingly without charge-weighting and with fixed hit thresholds, a
position resolution of [136.8 2.5 stat] rad is measured, consistent
with the expected resolution of strip-pitch/ = 131.3 rad. Other
-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci.
Symposium, Seattle, WA, reference adde
Design of a constant fraction discriminator for the VFAT3 front-end ASIC of the CMS GEM detector
In this work the design of a constant fraction discriminator (CFD) to be used in the VFAT3 chip for the read-out of the triple-GEM detectors of the CMS experiment, is described. A prototype chip containing 8 CFDs was implemented using 130 nm CMOS technology and test results are shown. © CERN 2016
Overview of large area triple-GEM detectors for the CMS forward muon upgrade
In order to cope with the harsh environment expected from the high luminosity LHC, the CMS forward muon system requires an upgrade. The two main challenges expected in this environment are an increase in the trigger rate and increased background radiation leading to a potential degradation of the particle ID performance. Additionally, upgrades to other subdetectors of CMS allow for extended coverage for particle tracking, and adding muon system coverage to this region will further enhance the performance of CMS
- …
