35 research outputs found

    Impact of insect herbivory on plant stress volatile emissions from trees : A synthesis of quantitative measurements and recommendations for future research

    Get PDF
    Plants, and particularly trees, are the largest source of atmospheric volatile organic compounds globally. Insect herbivory alters plant volatile emission rates and the types of compounds that are emitted. These stress volatiles are a major contribution to total plant volatile emissions during active herbivore feeding, with important implications for atmospheric chemistry processes. However, emission models do not currently have a quantitative description of plant volatile emission rates during and after insect herbivore feeding. This review provides a brief background on plant volatile organic compounds, the urgency of including biotic stress emissions in models, and a summary of plant volatile emission models and steps they have taken to incorporate stress emissions into their framework. The review ends with a synthesis of volatile emissions from trees during insect herbivory. This synthesis highlights key gaps in studied systems and measurement approaches. We provide a summary of recommendations for future work to address these gaps, improve comparability between studies, and generate the data-sets we need to develop a descriptive model of these plant stress volatile emissions.Peer reviewe

    Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems

    Get PDF
    Secondary organic aerosol (SOA) is an important constituent of the atmosphere where SOA particles are formed chiefly by the condensation or reactive uptake of oxidation products of volatile organic compounds (VOCs). The mass yield in SOA particle formation, as well as the chemical composition and volatility of the particles, is determined by the identity of the VOC precursor(s) and the oxidation conditions they experience. In this study, we used an oxidation flow reactor to generate biogenic SOA from the oxidation of Scots pine emissions. Mass yields, chemical composition and volatility of the SOA particles were characterized and compared with SOA particles formed from oxidation of α-pinene and from a mixture of acyclic–monocyclic sesquiterpenes (farnesenes and bisabolenes), which are significant components of the Scots pine emissions. SOA mass yields for Scots pine emissions dominated by farnesenes were lower than for α-pinene but higher than for the artificial mixture of farnesenes and bisabolenes. The reduction in the SOA yield in the farnesene- and bisabolene-dominated mixtures is due to exocyclic C=C bond scission in these acyclic–monocyclic sesquiterpenes during ozonolysis leading to smaller and generally more volatile products. SOA particles from the oxidation of Scots pine emissions had similar or lower volatility than SOA particles formed from either a single precursor or a simple mixture of VOCs. Applying physical stress to the Scots pine plants increased their monoterpene, especially monocyclic β-phellandrene, emissions, which further decreased SOA particle volatility and increased SOA mass yield. Our results highlight the need to account for the chemical complexity and structure of real-world biogenic VOC emissions and stress-induced changes to plant emissions when modelling SOA production and properties in the atmosphere. These results emphasize that a simple increase or decrease in relative monoterpene and sesquiterpene emissions should not be used as an indicator of SOA particle volatility

    Factors controlling the evaporation of secondary organic aerosol from alpha-pinene ozonolysis

    Get PDF
    Secondary organic aerosols (SOA) forms a major fraction of organic aerosols in the atmosphere. Knowledge of SOA properties that affect their dynamics in the atmosphere is needed for improving climate models. By combining experimental and modeling techniques, we investigated the factors controlling SOA evaporation under different humidity conditions. Our experiments support the conclusion of particle phase diffusivity limiting the evaporation under dry conditions. Viscosity of particles at dry conditions was estimated to increase several orders of magnitude during evaporation, up to 10(9)Pas. However, at atmospherically relevant relative humidity and time scales, our results show that diffusion limitations may have a minor effect on evaporation of the studied -pinene SOA particles. Based on previous studies and our model simulations, we suggest that, in warm environments dominated by biogenic emissions, the major uncertainty in models describing the SOA particle evaporation is related to the volatility of SOA constituents.Peer reviewe

    Chemical Characterization of Biogenic Secondary Organic Aerosol Generated from the Oxidation of Plant and Leaf Litter Emissions

    No full text
    Atmospheric aerosol impact climate by scattering and absorbing radiation and contributing to cloud formation processes. One of the largest uncertainties in climate change predictions is due to limitations in our understanding of the formation of secondary organic aerosol (SOA). This dissertation investigated SOA formation from the oxidation of plant and leaf litter emissions in a laboratory chamber. To accurately measure the biogenic volatile organic compound (BVOC) emissions, a dynamic dilution system was developed and is described in the first study. This system was used to calibrate the GC-MS-FID and improve quantitation with a maximum instrumental error of ±10%. In the second study, two separate sets of soil and leaf litter samples were transported from the University of Idaho experimental forest and brought back to the lab. The BVOC emissions from these samples were pumped to an aerosol growth chamber where they were oxidized to generate SOA. The resulting SOA composition was similar to SOA formed from the oxidation of other biogenic SOA precursors. Soil/leaf litter BVOC missions were compared to a canopy emission model and contributed from 12-136% of canopy emissions during spring and fall. Results suggest this could be a significiant emission source during those times of the year. In the third and fourth study, coniferous plants were treated with a plant hormone, methyl jasmonate, to simulate herbivory stress. The third study focused on the plant responses to the stress treatment by investigating changes to the BVOC emission profile. There was a high degree of inter- and intra-plant species variability. Some of the compounds most affected by the stress treatment were alpha-pinene, beta-pinene, limonene, 1,8-cineol, beta-myrcene, terpinolene, and the aromatic cymene isomers. The fourth study investigated changes to SOA composition due to changes in the BVOC emission profiles. Most pre-treatment SOA was very similar in composition with Pearson correlation coefficients between the AMS spectra greater than 0.88. The SOA generated after MeJA treatment produced aerosol mass spectra with similar m/z enhancements. This could indicate an herbivory stress mass spectral fingerprint that could be used to identify plant stress at an ecosystem scale

    SOA Formation Potential of Emissions from Soil and Leaf Litter

    No full text
    corecore