106 research outputs found

    Functionalization Of Graphene And Reduced Graphene Oxide In Different Matrices

    Get PDF
    Graphene (G) presents a huge variety of intriguing properties, as extraordinary electronic transport characteristics. G, thanks to its low chemical reactivity, can also be used as an active support for catalytic nanoparticles. Some possible graphene application could be: its employment in active material in electronic devices such as sensors [1], batteries [2], supercapacitors, hydrogen storage systems or as fillers to produce multifunctional nanocomposite polymeric materials [3]. In more detail we would like to examine: different approach of reduction and functionalization of in situ reduced graphene oxide obtaining an enhancement of thermal conductivity and an resistivity decrease [4]. Surface modification and functionalization of rGO to improve its dispersion in organic solvent and also polymeric matrix [5]

    Influence of growing conditions on the reactivity of Ni supported graphene towards CO

    Get PDF
    Free standing graphene is chemically inert but, as recently demonstrated, CO chemisorption occurs at low crystal temperature on the single layer grown by ethene dehydrogenation on Ni(111). Such layer is inhomogeneous since different phases coexist, the relative abundance of which depends on the growth conditions. Here we show by X ray photoemission and high resolution electron energy loss spectroscopies that the attained CO coverage depends strongly on the relative weight of the different phases as well as on the concentration of carbon in the Ni subsurface region. Our data show that the chemical reactivity is hampered by the carbon content in the substrate. The correlation between the amount of adsorbed CO and the weight of the different graphene phases indicates that the top-fcc configuration is the most reactive

    The TES-based Cryogenic AntiCoincidence Detector (CryoAC) of ATHENA X-IFU: a large area silicon microcalorimeter for background particles detection

    Full text link
    We are developing the Cryogenic AntiCoincidence detector (CryoAC) of the ATHENA X-IFU spectrometer. It is a TES-based particle detector aimed to reduce the background of the instrument. Here, we present the result obtained with the last CryoAC single-pixel prototype. It is based on a 1 cm2 silicon absorber sensed by a single 2mm x 1mm Ir/Au TES, featuring an on-chip heater for calibration and diagnostic purposes. We have illuminated the sample with 55Fe (6 keV line) and 241Am (60 keV line) radioactive sources, thus studying the detector response and the heater calibration accuracy at low energy. Furthermore, we have operated the sample in combination with a past-generation CryoAC prototype. Here, by analyzing the coincident detections between the two detectors, we have been able to characterize the background spectrum of the laboratory environment and disentangle the primary (i.e. cosmic muons) and secondaries (mostly secondary photons and electrons) signatures in the spectral shape.Comment: Accepted for publication in the Journal of Low Temperature Physics for LTD-20 special issu

    Domain wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I. Theory

    Get PDF
    The Barkhausen effect (BE) in metallic ferromagnetic systems is theoretically investigated by a Langevin description of the stochastic motion of a domain wall in a randomly perturbed medium. BE statistical properties are calculated from approximate analytical solutions of the Fokker-Planck equation associated with the Langevin model, and from computer simulations of domain‐wall motion. It is predicted that the amplitude probability distribution P0(Ω) of the B flux rate Ω should obey the equation P0(Ω)∝Ω−1 exp(−Ω/〈Ω〉), with >0. This result implies scaling properties in the intermittent behavior of BE at low magnetization rates, which are described in terms of a fractal structure of fractal dimension D<1. Analytical expressions for the B power spectrum are also derived. Finally, the extension of the theory to the case where many domain walls participate in the magnetization process is discussed

    Design and preparation of a novel colon-targeted tablet of hydrocortisone

    Get PDF
    ABSTRACT The objective of this research was to design a new colon-targeted drug delivery system based on chitosan. The properties of the films were studied to obtain useful information about the possible applications of composite films. The composite films were used in a bilayer system to investigate their feasibility as coating materials. Tensile strength, swelling degree, solubility, biodegradation degree, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) investigations showed that the composite film was formed when chitosan and gelatin were reacted jointly. The results showed that a 6:4 blend ratio was the optimal chitosan/gelatin blend ratio. In vitro drug release results indicated that the Eudragit- and chitosan/gelatin-bilayer coating system prevented drug release in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). However, the drug release from a bilayer-coated tablet in SCF increased over time, and the drug was almost completely released after 24h. Overall, colon-targeted drug delivery was achieved by using a chitosan/gelatin complex film and a multilayer coating system
    • 

    corecore