381 research outputs found

    ULF Waves above the Nightside Auroral Oval during Substorm Onset

    Get PDF
    This chapter reviews historical ground-based observations of ultra-low-frequency (ULF) waves tied to substorms, and highlights new research linking these ULF waves explicitly to substorm onset itself. There are several robust methods that can be used to determine the characteristics of a nonstationary time series such as the ULF magnetic field traces observed in the auroral zone during substorms. These include the pure state filter, the Hilbert-Huang transform, and wavelet analysis. The first indication of a substorm is a sudden brightening of one of the quiet arcs lying in the midnight sector of the oval. The chapter focuses on the properties of ULF waves that are seen in two-dimensional images of auroral intensity near substorm expansion phase onset. It also discusses a wider range of magnetotail instabilities that could be responsible for the azimuthally structured auroral forms at substorm onset

    Carrier-bound Methotrexate. III.‡ Antiproliferative Activity of Macromolecular MTX Conjugates Against the Human HeLa and Colo Carcinoma Cell Lines

    Get PDF
    In continuation of studies in these laboratories aiming at the bioevaluation of macromolecular anticancer drug models, in vitro cytotoxicity screens are performed on several series of water-soluble polymer-methotrexate  conjugates. The methotrexate drug in these conjugates is bound through amide or ester linkages to water- soluble polyamide- or polyamidoamine-type carriers by previously developed anchoring techniques.Tests were  conducted against the HeLahumancervical carcinoma cell line generally considered to be drug-sensitive, and  against two variants of the rather refractory Colo 320 DM, a human colon adenocarcinoma line.KEYWORDS: Drug conjugation, Colo cell line, HeLa cell line, methotrexate, polyaspartamide,  polyamidoamine

    Anamorfična projekcija na poljubno neravno površino

    Get PDF

    Statistical Characterization of the Dynamic Near‐Earth Plasma Sheet Relative to Ultra‐Low Frequency (ULF) Wave Growth at Substorm Onset

    Get PDF
    Magnetospheric substorms are a complex phenomenon. During the initial stages of a substorm a variety of important processes occur in near-Earth space within a span of several minutes. The relative timing and links between these processes are critical to understanding how, where and when substorms may occur. One of the first observed signatures at substorm onset is the exponential increase in ULF (Ultra-Low Frequency) wave power in the near-Earth magnetotail (e.g., −7.5 ≤ XGSM ≤ −12.5 RE). We use the Time History of Events and Macroscale Interactions during Substorms spacecraft to examine the conditions in the magnetotail plasma sheet before, during and after local ULF wave growth. Prior to the ULF wave growth, the magnetotail stretches with convectional flows dominating. We then find strong earthward and azimuthal flows that peak at a similar time to the peak ULF wave power. These flows are found to be faster in the mid-tail (−10 ≤ XGSM ≤ −12.5 RE) than the near-tail (−7.5 ≤ XGSM ≤ −10 RE). Examining the local plasma energy density (magnetic, thermal and kinetic), we find no statistical decrease that could explain the exponentially growing ULF waves, in fact the local energy density is found to increase. This suggests that there may be an injection of energy from elsewhere in the magnetotail. Following the peak ULF wave power the tail is seen to dipolarize, and the local energy density is enhanced

    Anamorfična projekcija na neravno površino

    Get PDF

    Anamorfična projekcija na neravno površino

    Get PDF

    Statistical azimuthal structuring of the substorm onset arc: Implications for the onset mechanism

    Get PDF
    The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself

    Forecasting GOES 15 >2 MeV Electron Fluxes From Solar Wind Data and Geomagnetic Indices

    Get PDF
    The flux of > 2 MeV electrons at geosynchronous orbit is used by space weather forecasters as a key indicator of enhanced risk of damage to spacecraft in low, medium or geosynchronous Earth orbits. We present a methodology that uses the amount of time a single input dataset (solar wind data or geomagnetic indices) exceeds a given threshold to produce deterministic and probabilistic forecasts of the > 2 MeV flux at GEO exceeding 1000 or 10000 cm ‐2 s ‐1 sr ‐1 within up to 10 days. By comparing our forecasts with measured fluxes from GOES 15 between 2014 and 2016, we determine the optimum forecast thresholds for deterministic and probabilistic forecasts by maximising the ROC and Brier Skill Scores respectively. The training dataset gives peak ROC scores of 0.71 to 0.87 and peak Brier Skill Scores of ‐0.03 to 0.32. Forecasts from AL give the highest skill scores for forecasts of up to 6‐days. AL, solar wind pressure or SYM‐H give the highest skill scores over 7‐10 days. Hit rates range over 56‐89% with false alarm rates of 11‐53%. Applied to 2012, 2013 and 2017, our best forecasts have hit rates of 56‐83% and false alarm rates of 10‐20%. Further tuning of the forecasts may improve these. Our hit rates are comparable to those from operational fluence forecasts, that incorporate fluence measurements, but our false alarm rates are higher. This proof‐of‐concept shows that the geosynchronous electron flux can be forecast with a degree of success without incorporating a persistence element into the forecasts

    Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density

    Get PDF
    During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization
    corecore