74 research outputs found

    MEGARA main optics opto-mechanics

    Get PDF
    MEGARA is the future integral-field and multi-object spectrograph for the GTC 10.4m telescope located in the Observatorio del Roque de los Muchachos in La Palma. INAOE is a member of the MEGARA Consortium and it is in charge of the Optics Manufacturing work package. In addition to the manufacturing of 73 elements, the work package includes the opto-mechanics i.e. the opto-mechanical design, manufacture, tests and integration of the complete assembly of the main optics composed by the collimator and camera subsystems. MEGARA passed the Optics Detailed Design Review in May 2013 and will have the Detailed Design Review of the complete instrument early 2014. Here we describe the detailed design of the collimator and camera barrels. We also present the finite elements models developed to simulate the behavior of the barrel, sub-cells and other mechanical elements. These models verify that the expected stress fields and the gravitational displacements on the lenses are compatible with the optical quality tolerances. The design is finished and ready for fabrication

    MEGARA-GTC stellar spectral library: I

    Get PDF
    MEGARA (Multi Espectrografo en GTC de Alta Resolucion para Astronomia) is an optical (3650-9750 Å), fibre-fed, medium-high spectral resolution (R = 6000, 12 000 and 20 000) instrument for the Gran Telescopio CANARIAS (GTC) 10.4-m telescope, commissioned in the summer of 2017, and currently in operation. The scientific exploitation of MEGARA requires a stellar spectra library to interpret galaxy data and to estimate the contribution of the stellar populations. In this paper, we introduce the MEGARA-GTC spectral library, detailing the rationale behind the building of this catalogue. We present the spectra of 97 stars (21 individual stars and 56 members of the globular cluster M15, which are both subsamples taken during the commissioning runs, and 20 stars from our ongoing GTC Open-Time programme). The spectra have R = 20 000 in the HR-R and HR-I set-ups, centred at 6563 and 8633 Å, respectively. We describe the procedures to reduce and analyse the data. Then, we determine the best-fitting theoretical models to each spectrum through a χ^(2) minimization technique, to derive the stellar physical parameters, and we discuss the results. We have also measured some absorption lines and indices. Finally, we introduce our project to complete the library and the data base in order to make the spectra available to the community

    Mapping the ionized gas of the metal-poor HII galaxy PHL 293B with MEGARA

    Full text link
    Here we report the first spatially resolved spectroscopic study for the galaxy PHL293B using the high-resolution GTC/MEGARA IFU. PHL293B is a local, extremely metal-poor, high ionization galaxy. This makes PHL 293B an excellent analogue for galaxies in the early Universe. The MEGARA aperture (~12.5''x 11.3'') covers the entire PHL 293B main body and its far-reaching ionized gas. We created and discussed maps of all relevant emission lines, line ratios and physical-chemical properties of the ionized ISM. The narrow emission gas appears to be ionized mainly by massive stars according to the observed diganostic line ratios, regardless of the position across the MEGARA aperture. We detected low intensity broad emission components and blueshifted absorptions in the Balmer lines (Hα\alpha,Hβ\beta) which are located in the brightest zone of the galaxy ISM. A chemically homogeneity, across hundreds of parsecs, is observed in O/H. We take the oxygen abundance 12+log(O/H)=7.64 ±\pm 0.06 derived from the PHL293B integrated spectrum as the representative metallicity for the galaxy. Our IFU data reveal for the first time that the nebular HeII4686 emission from PHL 293B is spatially extended and coincident with the ionizing stellar cluster, and allow us to compute its absolute HeII ionizing photon flux. Wolf-Rayet bumps are not detected excluding therefore Wolf-Rayet stars as the main HeII excitation source. The origin of the nebular HeII4686 is discussed.Comment: 14 pages, 9 Figures, 3 Tables; Accepted for publication in MNRA

    Comparing post-event and pre-event damage assessment: Information gaps and lessons learnt

    Get PDF
    Abstract. Post event damage and needs assessment can supply fundamental information to feed risk models, i.e. data to define, calibrate and validate risk models. The lack or low quality of information regarding damage and losses collected in the aftermath of events conditions the quality of pre-event scenarios, thus affecting also the significance and the relevance of cost benefit analyses on mitigation measures to reduce the severity and magnitude of damage that are expected. Data collected in the aftermath of disasters are usually not suitable to this aim. Mostly, data on damage explicative variables (i.e. hazard, exposure, vulnerability and mitigation actions) are missing; damage data themselves can be also unsuitable as they refer to different spatial or temporal scales than those at which damage models work. In such a context, this paper presents results from the European Project IDEA (Improving Damage assessments to Enhance cost-benefit Analyses). The project is a response to the very limited reliability of data currently used to support cost-benefit analyses for natural hazards mitigation. The main objective of IDEA is an improvement of both damage data quality and procedures to collect and manage them. The paper focus in detail on the investigation of how improved damage data can better support the risk-modelling process. To this aim, the flood hitting the Umbria Region (Italy) in 2012 and the earthquake event that stuck the municipality of Lorca (Spain) in 2011 were investigated. Observed damages and damage predictions based on data that were available before the disaster have been compared. The comparison had several objectives: - to verify the reliability of damage models that are currently used for damage estimation and that are proposed in literature; - to identify data gaps in pre-event assessment that could be narrowed by better damage data. This is relevant for showing what data are currently missing in risk modelling but could be obtained at reasonable costs; - to identify sectors for which pre-event damage assessment cannot be carried out or is carried out at the expense of large uncertainties and/or roughness; - to show how improved risk modelling could better feed cost benefit analyses of pre-event mitigation measure

    The nature of the Cygnus extreme B supergiant 2MASS J20395358+4222505

    Get PDF
    2MASS J20395358+4222505 is an obscured early B supergiant near the massive OB star association Cygnus OB2. Despite its bright infrared magnitude (Ks = 5.82) it has remained largely ignored because of its dim optical magnitude (B = 16.63, V = 13.68). In a previous paper, we classified it as a highly reddened, potentially extremely luminous, early B-type supergiant. We obtained its spectrum in the U, B and R spectral bands during commissioning observations with the instrument MEGARA at the Gran Telescopio CANARIAS. It displays a particularly strong Hα emission for its spectral type, B1 Ia. The star seems to be in an intermediate phase between supergiant and hypergiant, a group that it will probably join in the near (astronomical) future. We observe a radial velocity difference between individual observations and determine the stellar parameters, obtaining Teff = 24 000 K and log gc = 2.88 ± 0.15. The rotational velocity found is large for a B supergiant, v sin i = 110 ± 25 kms−1⁠. The abundance pattern is consistent with solar, with a mild C underabundance (based on a single line). Assuming that J20395358+4222505 is at the distance of Cyg OB2, we derive the radius from infrared photometry, finding R = 41.2 ± 4.0 R⊙, log(L/L⊙) = 5.71 ± 0.04 and a spectroscopic mass of 46.5 ± 15.0 M⊙. The clumped mass-loss rate (clumping factor 10) is very high for the spectral type, M˙ = 2.4 × 10−6 M⊙ a−1. The high rotational velocity and mass-loss rate place the star at the hot side of the bi-stability jump. Together with the nearly solar CNO abundance pattern, they may also point to evolution in a binary system, J20395358+4222505 being the initial secondary.SS-D and AH acknowledge support from the Spanish Government Ministerio de Ciencia e Innovación through grants PGC-2018-091 3741-B-C22 and CEX2019-000920-S and from the Canarian Agency for Research, Innovation and Information Society (ACIISI), of the Canary Islands Government, and the European Regional Development Fund (ERDF), under grant with reference ProID2020010016. MG and FN acknowledge financial support through Spanish grant PID2019-105552RB-C41 (MINECO/MCIU/AEI/FEDER) and from the Spanish State Research Agency (AEI) through the Unidad de Excelencia ‘María de Maeztu’-Centro de Astrobiología (CSIC-INTA) project No. MDM-2017-0737. SRB acknowledges support by the Spanish Government under grants AYA2015-68012-C2-2-P and PGC2018-093741-B-C21/C22 (MICIU/AEI/FEDER, UE). SRA acknowledges funding support from the FONDECYT Iniciación project 11171025 and the FONDECYT Regular project 1201490. JIP acknowledges finantial support from projects Estallidos6 AYA2016-79724-C4 (Spanish Ministerio de Economia y Competitividad), Estallidos7 PID2019-107408GB-C44 (Spanish Ministerio de Ciencia e Innovacion), grant P18-FR-2664 (Junta de Andalucía), and grant SEV-2017-0709 ‘Centro de Excelencia Severo Ochoa Program’ (Spanish Science Ministry). AGP, SP, AG-M, JG and NC acknowledge support from the Spanish MCI through project RTI2018-096188-B-I00

    Peripheral electrical stimulation in Alzheimer's Disease: A randomized controlled trial on cognition and behavior

    Get PDF
    In a number of studies, peripheral electrical nerve stimulation has been applied to Alzheimer's disease (AD) patients who lived in a nursing home. Improvements were observed in memory, verbal fluency, affective behavior, activities of daily living and on the rest-activity rhythm and pupillary light reflex. The aim of the present, randomized, placebo-controlled, parallel-group clinical trial was to examine the effects of electrical stimulation on cognition and behavior in AD patients who still live at home. Repeated measures analyses of variance revealed no effects of the intervention in the verum group (n = 32) compared with the placebo group (n = 30) on any of the cognitive and behavioral outcome measures. However, the majority of the patients and the caregivers evaluated the treatment procedure positively, and applying the daily treatment at home caused minimal burden. The lack of treatment effects calls for reconsideration of electrical stimulation as a symptomatic treatment in A

    Mitochondrial Alterations in PINK1 Deficient Cells Are Influenced by Calcineurin-Dependent Dephosphorylation of Dynamin-Related Protein 1

    Get PDF
    PTEN-induced novel kinase 1 (PINK1) mutations are associated with autosomal recessive parkinsonism. Previous studies have shown that PINK1 influences both mitochondrial function and morphology although it is not clearly established which of these are primary events and which are secondary. Here, we describe a novel mechanism linking mitochondrial dysfunction and alterations in mitochondrial morphology related to PINK1. Cell lines were generated by stably transducing human dopaminergic M17 cells with lentiviral constructs that increased or knocked down PINK1. As in previous studies, PINK1 deficient cells have lower mitochondrial membrane potential and are more sensitive to the toxic effects of mitochondrial complex I inhibitors. We also show that wild-type PINK1, but not recessive mutant or kinase dead versions, protects against rotenone-induced mitochondrial fragmentation whereas PINK1 deficient cells show lower mitochondrial connectivity. Expression of dynamin-related protein 1 (Drp1) exaggerates PINK1 deficiency phenotypes and Drp1 RNAi rescues them. We also show that Drp1 is dephosphorylated in PINK1 deficient cells due to activation of the calcium-dependent phosphatase calcineurin. Accordingly, the calcineurin inhibitor FK506 blocks both Drp1 dephosphorylation and loss of mitochondrial integrity in PINK1 deficient cells but does not fully rescue mitochondrial membrane potential. We propose that alterations in mitochondrial connectivity in this system are secondary to functional effects on mitochondrial membrane potential

    MEGARA, the new intermediate-resolution optical IFU and MOS for GTC: getting ready for the telescope

    Get PDF
    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma that is being built by a Consortium led by UCM (Spain) that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). The instrument is currently finishing AIV and will be sent to GTC on November 2016 for its on-sky commissioning on April 2017. The MEGARA IFU fiber bundle (LCB) covers 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec while the MEGARA MOS mode allows observing up to 92 objects in a region of 3.5x3.5 arcmin2 around the IFU. The IFU and MOS modes of MEGARA will provide identical intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3700-9800ÅÅ. An x-y mechanism placed at the pseudo-slit position allows (1) exchanging between the two observing modes and (2) focusing the spectrograph for each VPH setup. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts a 4kx4k 15-μm CCD. The unique characteristics of MEGARA in terms of throughput and versatility and the unsurpassed collecting are of GTC make of this instrument the most efficient tool to date to analyze astrophysical objects at intermediate spectral resolutions. In these proceedings we present a summary of the instrument characteristics and the results from the AIV phase. All subsystems have been successfully integrated and the system-level AIV phase is progressing as expected

    The nature of the Cygnus extreme B supergiant 2MASS J20395358+4222505

    Get PDF
    2MASS J20395358+4222505 is an obscured early B supergiant near the massive OB star association Cygnus OB2. Despite its bright infrared magnitude (K-s = 5.82) it has remained largely ignored because of its dim optical magnitude (B = 16.63, V = 13.68). In a previous paper, we classified it as a highly reddened, potentially extremely luminous, early B-type supergiant. We obtained its spectrum in the U, B and R spectral bands during commissioning observations with the instrument MEGARA at the Gran Telescopio CANARIAS. It displays a particularly strong H-alpha emission for its spectral type, B1 Ia. The star seems to be in an intermediate phase between supergiant and hypergiant, a group that it will probably join in the near (astronomical) future. We observe a radial velocity difference between individual observations and determine the stellar parameters, obtaining T-eff = 24 000 K and log g(c) = 2.88 +/- 0.15. The rotational velocity found is large for a B supergiant, v sin i = 110 +/- 25 km s(-1). The abundance pattern is consistent with solar, with a mild C underabundance (based on a single line). Assuming that J20395358+4222505 is at the distance of Cyg OB2, we derive the radius from infrared photometry, finding R = 41.2 +/- 4.0 R-circle dot, log(L/L-circle dot) = 5.71 +/- 0.04 and a spectroscopic mass of 46.5 +/- 15.0 M-circle dot. The clumped mass-loss rate (clumping factor 10) is very high for the spectral type, (M) over dot = 2.4 x10(-6) M-circle dot a(-1). The high rotational velocity and mass-loss rate place the star at the hot side of the bi-stability jump. Together with the nearly solar CNO abundance pattern, they may also point to evolution in a binary system, J20395358+4222505 being the initial secondary
    corecore