5 research outputs found

    Manganese modified porous silicates as environmental friendly catalysts

    No full text

    Thin films of cubic mesoporous aluminophosphates modified by silicon and manganese

    Get PDF
    Mesoporous aluminophosphate thin films and xerogels with ordered three-dimensional pore arrangement, modified by silicon or silicon and manganese, were synthesized. Aluminophosphate reaction mixtures were templated with non ionic polymer surfactant Pluronic F127 and deposited as thin layers of precursor solution on Petri dishes for xerogels and on glass substrates for thin films. Surfactant removal was investigated by thermal analysis. Small Angle X-ray Scattering measurements showed that calcined silicoaluminophosphate (SAPO) and manganese silicoaluminophosphate (MnSAPO) thin films have highly ordered mesostructures, which remain stable up to at least 400°C. The mesostructures exhibit cubic symmetry described by an Im3̄m space group. Cubic mesostructure was confirmed also by TEM, SEM and AFM microscopy. Incorporation of silicon and manganese into the aluminophosphate framework was studied by solid-state NMR and X-ray absorption spectroscopy. Silicon-rich domains were detected in calcined SAPO and MnSAPO xerogels and in MnSAPO thin films. The observation of Si(OSi)3(OAl) framework units at the border of such domains suggests that acid sites might be included within silicoaluminophosphate walls. Mn3+ and Mn2+ cations are present in the MnSAPO frameworks of calcined xerogels and thin films in the molar ratio of 40%/60%. Manganese cations are coordinated to four oxygen atoms, suggesting that they are incorporated within the framework and that they can act as framework redox sites.Fil: Cecowski, Sasa. National Institute Of Chemistry; EsloveniaFil: Tusar, Natasa Novak. National Institute Of Chemistry; EsloveniaFil: Rangus, Mojca. National Institute Of Chemistry; EsloveniaFil: Mali, Gregor. National Institute Of Chemistry; EsloveniaFil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Kaucic, Venceslav. National Institute Of Chemistry; Esloveni

    Data centres for IoT applications: The M2DC approach (Invited paper)

    No full text
    Oleksiak A, Porrmann M, Hagemeyer J, et al. Data centres for IoT applications: The M2DC approach (Invited paper). In: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS). IEEE; 2016: 293-299.The Modular Microserver DataCentre (M2DC) project investigates, develops and demonstrates a modular, highly-efficient, cost-optimized server architecture composed of heterogeneous micro server computing resources, being able to be tailored to meet requirements from various application domains, including the Internet of Things. M2DC is built on three main pillars: a flexible server architecture that can be easily customised, maintained and updated; advanced management strategies and system efficiency enhancements (SEE); well-defined interfaces to surrounding software data centre ecosystem

    M2DC-A novel heterogeneous hyperscale microserver platform

    No full text
    The Modular Microserver Datacentre (M2DC) project targets the development of a new class of energy-efficient TCO-optimized appliances with built-in efficiency and dependability enhancements. The appliances will be easy to integrate with a broad ecosystem of management software and fully software defined to enable optimization for a variety of future demanding applications in a cost-effective way. The highly flexible M2DC server platform will enable customization and smooth adaptation to various types of applications, while advanced management strategies and system efficiency enhancements (SEE) will be used to improve energy efficiency, performance, security, and reliability. Data center capable abstraction of the underlying heterogeneity of the server is provided by an OpenStack-based middleware. In this chapter, we focus in particular on the architecture of the server platform including a dedicated high-speed, low latency communication infrastructure, give a short introduction into the software stack including thermal management strategies, and provide an overview of the targeted applications
    corecore