30 research outputs found

    Transmission potential of influenza A/H7N9, February to May 2013, China

    Get PDF
    Background On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness. Methods We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses. Results Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated transmission potential of A/H7N9 appears lower than that of recent zoonotic threats, including avian influenza A/H5N1, swine influenza H3N2sw and Nipah virus. Conclusion Although uncertainty remains high in R estimates for H7N9 due to limited epidemiological information, all available evidence points to a low transmission potential. Continued monitoring of the transmission potential of A/H7N9 is critical in the coming months as intervention measures may be relaxed and seasonal factors could promote disease transmission in colder months

    Characterizing Ebola Transmission Patterns based on Internet News Reports.

    Get PDF
    BACKGROUND:  Detailed information on patient exposure, contact patterns, and discharge status, is rarely available in real time from traditional surveillance systems in the context of an emerging infectious disease outbreak. Here we validate the systematic collection of Internet news reports to characterize epidemiological patterns of Ebola virus disease (EVD) infections during the West African 2014-2015 outbreak. METHODS:  Based on 58 news reports, we analyzed a total of 79 EVD clusters (286 cases) of size ranging from 1 to 33 cases between January 2014 and February 2015 in Guinea, Sierra Leone and Liberia. RESULTS AND CONCLUSIONS:  The great majority of reported exposures stemmed from contact with family members (57.3%) followed by hospitals (18.2%) and funerals (12.7%). Our data indicated that funeral exposure was significantly more frequent in Sierra Leone (27.3%) followed by Guinea (18.2%) and Liberia (1.8%) (Chi-square test;

    Key challenges for the surveillance of respiratory viruses: transitioning out of the acute phase of the SARS-CoV-2 pandemic

    Full text link
    To support the ongoing management of viral respiratory diseases, many countries are moving towards an integrated model of surveillance for SARS-CoV-2, influenza, and other respiratory pathogens. While many surveillance approaches catalysed by the COVID-19 pandemic provide novel epidemiological insight, continuing them as implemented during the pandemic is unlikely to be feasible for non-emergency surveillance, and many have already been scaled back. Furthermore, given anticipated co-circulation of SARS-CoV-2 and influenza, surveillance activities in place prior to the pandemic require review and adjustment to ensure their ongoing value for public health. In this perspective, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies, their contribution to epidemiological assessment, forecasting, and public health decision making

    Identification and Evaluation of Epidemic Prediction and Forecasting Reporting Guidelines: A Systematic Review and a Call for Action

    Get PDF
    INTRODUCTION: High quality epidemic forecasting and prediction are critical to support response to local, regional and global infectious disease threats. Other fields of biomedical research use consensus reporting guidelines to ensure standardization and quality of research practice among researchers, and to provide a framework for end-users to interpret the validity of study results. The purpose of this study was to determine whether guidelines exist specifically for epidemic forecast and prediction publications. METHODS: We undertook a formal systematic review to identify and evaluate any published infectious disease epidemic forecasting and prediction reporting guidelines. This review leveraged a team of 18 investigators from US Government and academic sectors. RESULTS: A literature database search through May 26, 2019, identified 1467 publications (MEDLINE n = 584, EMBASE n = 883), and a grey-literature review identified a further 407 publications, yielding a total 1777 unique publications. A paired-reviewer system screened in 25 potentially eligible publications, of which two were ultimately deemed eligible. A qualitative review of these two published reporting guidelines indicated that neither were specific for epidemic forecasting and prediction, although they described reporting items which may be relevant to epidemic forecasting and prediction studies. CONCLUSIONS: This systematic review confirms that no specific guidelines have been published to standardize the reporting of epidemic forecasting and prediction studies. These findings underscore the need to develop such reporting guidelines in order to improve the transparency, quality and implementation of epidemic forecasting and prediction research in operational public health

    Identification and evaluation of epidemic prediction and forecasting reporting guidelines : a systematic review and a call for action

    Get PDF
    NGR reports funding by NIGMS grant R35GM119582. BMA is supported by Bill and Melinda Gates Foundation through the Global Good Fund. SP and IMB were funded by the Armed Forces Health Surveillance Branch (GEIS: P0116_19_WR_03.11).Introduction: High quality epidemic forecasting and prediction are critical to support response to local, regional and global infectious disease threats. Other fields of biomedical research use consensus reporting guidelines to ensure standardization and quality of research practice among researchers, and to provide a framework for end-users to interpret the validity of study results. The purpose of this study was to determine whether guidelines exist specifically for epidemic forecast and prediction publications. Methods: We undertook a formal systematic review to identify and evaluate any published infectious disease epidemic forecasting and prediction reporting guidelines. This review leveraged a team of 18 investigators from US Government and academic sectors. Results: A literature database search through May 26, 2019, identified 1467 publications (MEDLINE n = 584, EMBASE n = 883), and a grey-literature review identified a further 407 publications, yielding a total 1777 unique publications. A paired-reviewer system screened in 25 potentially eligible publications, of which two were ultimately deemed eligible. A qualitative review of these two published reporting guidelines indicated that neither were specific for epidemic forecasting and prediction, although they described reporting items which may be relevant to epidemic forecasting and prediction studies. Conclusions: This systematic review confirms that no specific guidelines have been published to standardize the reporting of epidemic forecasting and prediction studies. These findings underscore the need to develop such reporting guidelines in order to improve the transparency, quality and implementation of epidemic forecasting and prediction research in operational public health.Publisher PDFPeer reviewe

    Recommended reporting items for epidemic forecasting and prediction research : the EPIFORGE 2020 guidelines

    Get PDF
    Funding: MIDAS Coordination Center and the National Institutes of General Medical Sciences (NIGMS 1U24GM132013) for supporting travel to the face-to-face consensus meeting by members of the Working Group. NGR was supported by the National Institutes of General Medical Sciences (R35GM119582). Travel for SV was supported by the National Institutes of General Medical Sciences (1U24GM132013-01). BMA was supported by Bill & Melinda Gates through the Global Good Fund. RL was funded by a Royal Society Dorothy Hodgkin Fellowship.Background  The importance of infectious disease epidemic forecasting and prediction research is underscored by decades of communicable disease outbreaks, including COVID-19. Unlike other fields of medical research, such as clinical trials and systematic reviews, no reporting guidelines exist for reporting epidemic forecasting and prediction research despite their utility. We therefore developed the EPIFORGE checklist, a guideline for standardized reporting of epidemic forecasting research. Methods and findings  We developed this checklist using a best-practice process for development of reporting guidelines, involving a Delphi process and broad consultation with an international panel of infectious disease modelers and model end users. The objectives of these guidelines are to improve the consistency, reproducibility, comparability, and quality of epidemic forecasting reporting. The guidelines are not designed to advise scientists on how to perform epidemic forecasting and prediction research, but rather to serve as a standard for reporting critical methodological details of such studies. Conclusions  These guidelines have been submitted to the EQUATOR network, in addition to hosting by other dedicated webpages to facilitate feedback and journal endorsement.Publisher PDFNon peer reviewe

    The genomic and epidemiological dynamics of human influenza A virus

    Get PDF
    The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions

    The Burden and Etiology of Community-Onset Pneumonia in the Aging Japanese Population: A Multicenter Prospective Study

    Get PDF
    Background: The increasing burden of pneumonia in adults is an emerging health issue in the era of global population aging. This study was conducted to elucidate the burden of community-onset pneumonia (COP) and its etiologic fractions in Japan, the world\u27s most aged society. Methods: A multicenter prospective surveillance for COP was conducted from September 2011 to January 2013 in Japan. All pneumonia patients aged ?15 years, including those with community-acquired pneumonia (CAP) and health care-associated pneumonia (HCAP), were enrolled at four community hospitals on four major islands. The COP burden was estimated based on the surveillance data and national statistics. Results: A total of 1,772 COP episodes out of 932,080 hospital visits were enrolled during the surveillance. The estimated overall incidence rates of adult COP, hospitalization, and in-hospital death were 16.9 (95% confidence interval, 13.6 to 20.9), 5.3 (4.5 to 6.2), and 0.7 (0.6 to 0.8) per 1,000 person-years (PY), respectively. The incidence rates sharply increased with age; the incidence in people aged ?85 years was 10-fold higher than that in people aged 15-64 years. The estimated annual number of adult COP cases in the entire Japanese population was 1,880,000, and 69.4% were aged ?65 years. Aspiration-associated pneumonia (630,000) was the leading etiologic category, followed by Streptococcus pneumoniae-associated pneumonia (530,000), Haemophilus influenzae-associated pneumonia (420,000), and respiratory virus-associated pneumonia (420,000), including influenza-associated pneumonia (30,000)
    corecore