1,912 research outputs found
A Side of Mercury Not Seen By Mariner 10
More than 60,000 images of Mercury were taken at ~29 deg elevation during two
sunrises, at 820 nm, and through a 1.35 m diameter off-axis aperture on the
SOAR telescope. The sharpest resolve 0.2" (140 km) and cover 190-300 deg
longitude -- a swath unseen by the Mariner 10 spacecraft -- at complementary
phase angles to previous ground-based optical imagery. Our view is comparable
to that of the Moon through weak binoculars. Evident are the large crater
Mozart shadowed on the terminator, fresh rayed craters, and other albedo
features keyed to topography and radar reflectivity, including the putative
huge ``Basin S'' on the limb. Classical bright feature Liguria resolves across
the northwest boundary of the Caloris basin into a bright splotch centered on a
sharp, 20 km diameter radar crater, and is the brightest feature within a
prominent darker ``cap'' (Hermean feature Solitudo Phoenicis) that covers the
northern hemisphere between longitudes 140-250 deg. The cap may result from
space weathering that darkens via a magnetically enhanced flux of the solar
wind, or that reddens low latitudes via high solar insolation.Comment: 7 pages, 4 PDF figures, pdfLaTeX, typos corrected, Fig. 2 modified
slightly to add crater diameters not given in published versio
Taxonomic Features and Comparison of the Gut Microbiome from Two Edible Fungus-Farming Termites (Macrotermes falciger, M. natalensis) Harvested in the Vhembe District of Limpopo, South Africa
Background Termites are an important food resource for many human populations around the world, and are a good supply of nutrients. The fungus-farming âhigherâ termite members of Macrotermitinae are also consumed by modern great apes and are implicated as critical dietary resources for early hominins. While the chemical nutritional composition of edible termites is well known, their microbiomes are unexplored in the context of human health. Here we sequenced the V4 region of the 16S rRNA gene of gut microbiota extracted from the whole intestinal tract of two Macrotermes sp. soldiers collected from the Limpopo region of South Africa. Results Major and minor soldier subcastes of M. falciger exhibit consistent differences in taxonomic representation, and are variable in microbial presence and abundance patterns when compared to another edible but less preferred species, M. natalensis. Subcaste differences include alternate patterns in sulfate-reducing bacteria and methanogenic Euryarchaeota abundance, and differences in abundance between Alistipes and Ruminococcaceae. M. falciger minor soldiers and M. natalensissoldiers have similar microbial profiles, likely from close proximity to the termite worker castes, particularly during foraging and fungus garden cultivation. Compared with previously published termite and cockroach gut microbiome data, the taxonomic representation was generally split between termites that directly digest lignocellulose and humic substrates and those that consume a more distilled form of nutrition as with the omnivorous cockroaches and fungus-farming termites. Lastly, to determine if edible termites may point to a shared reservoir for rare bacterial taxa found in the gut microbiome of humans, we focused on the genus Treponema. The majority of Treponemasequences from edible termite gut microbiota most closely relate to species recovered from other termites or from environmental samples, except for one novel OTU strain, which clustered separately with Treponema found in hunter-gatherer human groups. Conclusions Macrotermes consumed by humans display special gut microbial arrangements that are atypical for a lignocellulose digesting invertebrate, but are instead suited to the simplified nutrition in the fungus-farmer diet. Our work brings to light the particular termite microbiome features that should be explored further as avenues in human health, agricultural sustainability, and evolutionary research
Re-entrant ferroelectricity in liquid crystals
The ferroelectric (Sm C) -- antiferroelectric (Sm C) -- reentrant
ferroelectric (re Sm C) phase temperature sequence was observed for system
with competing synclinic - anticlinic interactions. The basic properties of
this system are as follows (1) the Sm C phase is metastable in temperature
range of the Sm C stability (2) the double inversions of the helix
handedness at Sm C -- Sm C and Sm C% -- re-Sm C phase
transitions were found (3) the threshold electric field that is necessary to
induce synclinic ordering in the Sm C phase decreases near both Sm
C -- Sm C and Sm C -- re-Sm C phase boundaries, and it has
maximum in the middle of the Sm C stability region. All these properties
are properly described by simple Landau model that accounts for nearest
neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR
Oil and gas well site and right-of-way payments (1980 surveys)
The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311
Solid State Neutral Particle Analyzer Array on NSTX
A Solid State Neutral Particle Analyzer (SSNPA) array has been installed on the National Spherical Torus Experiment (NSTX). The array consists of four chords viewing through a common vacuum flange. The tangency radii of the viewing chords are 60, 90, 100, and 120 cm. They view across the three co-injection neutral beam lines (deuterium, 80 keV (typ.) with tangency radii 48.7, 59.2, and 69.4 cm) on NSTX and detect co-going energetic ions. A silicon photodiode used was calibrated by using a mono-energetic deuteron beam source. Deuterons with energy above 40 keV can be detected with the present setup. The degradation of the performance was also investigated. Lead shots and epoxy are used for neutron shielding to reduce handling any hazardous heavy metal. This method also enables us to make an arbitrary shape to be fit into the complex flight tube
Galactic-Scale Outflow and Supersonic Ram-Pressure Stripping in the Virgo Cluster Galaxy NGC 4388
The Hawaii Imaging Fabry-Perot Interferometer (HIFI) on the University of
Hawaii 2.2m telescope was used to map the Halpha and [O III] 5007 A
emission-line profiles across the entire disk of the edge-on Sb galaxy NGC
4388. We confirm a rich complex of highly ionized gas that extends ~4 kpc above
the disk of this galaxy. Low-ionization gas associated with star formation is
also present in the disk. Evidence for bar streaming is detected in the disk
component and is discussed in a companion paper (Veilleux, Bland-Hawthorn, &
Cecil 1999; hereafter VBC). Non-rotational blueshifted velocities of 50 - 250
km/s are measured in the extraplanar gas north-east of the nucleus. The
brighter features in this complex tend to have more blueshifted velocities. A
redshifted cloud is also detected 2 kpc south-west of the nucleus. The velocity
field of the extraplanar gas of NGC 4388 appears to be unaffected by the
inferred supersonic (Mach number M ~ 3) motion of this galaxy through the ICM
of the Virgo cluster. We argue that this is because the galaxy and the high-|z|
gas lie behind a Mach cone with opening angle ~ 80 degrees. The shocked ICM
that flows near the galaxy has a velocity of ~ 500 km/s and exerts insufficient
ram pressure on the extraplanar gas to perturb its kinematics. We consider
several explanations of the velocity field of the extraplanar gas. Velocities,
especially blueshifted velocities on the N side of the galaxy, are best
explained as a bipolar outflow which is tilted by > 12 degrees from the normal
to the disk. The observed offset between the extraplanar gas and the radio
structure may be due to buoyancy or refractive bending by density gradients in
the halo gas. Velocity substructure in the outflowing gas also suggests an
interaction with ambient halo gas.Comment: 29 pages including 5 figures, Latex, requires aaspp4.sty, to appear
in ApJ, 520 (July 20, 1999 issue
Recommended from our members
Geologic ages and accumulation rates of basalt-flow groups and sedimentary interbeds in selected wells at the Idaho National Engineering Laboratory, Idaho
Geologic ages and accumulation rates, estimated from regressions, were used to evaluate measured ages and interpreted stratigraphic and structural relations of basalt and sediment in the unsaturated zone and the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) in eastern Idaho. Geologic ages and accumulation rates were estimated from standard linear regressions of 21 mean potassium-argon (K-Ar) ages, selected mean paleomagnetic ages, and cumulative depths of a composite stratigraphic section composed of complete intervals of basalt and sediment that were deposited in areas of past maximum subsidence. Accumulation rates also were estimated from regressions of stratigraphic intervals in three wells in and adjacent to an area of interpreted uplift at and near the Idaho Chemical Processing Plant (ICPP) and the Test Reactor Area (TRA) to allow a comparison of rates in areas of past uplift and subsidence. Estimated geologic ages range from about 200 thousand to 1.8 million years before present and are reasonable approximations for the interval of basalt and sediment above the effective base of the aquifer, based on reported uncertainties of corresponding measured ages. Estimated ages between 200 and 800 thousand years are within the range of reported uncertainties for all 15 K-Ar ages used in regressions and two out of three -argon ({sup 40}Ar/{sup 39}Ar) ages of duplicate argon samples. Two sets of estimated ages between 800 thousand and 1.8 million years are within the range of reported uncertainties for all seven K-Ar ages used in regressions, which include one shared age of about 800 thousand years. Two sets of ages were estimated for this interval because K-Ar ages make up two populations that agree with previous and revised ages of three paleomagnetic subchrons. The youngest set of ages is consistent with a K-Ar age from the effective base of the aquifer that agrees with previous ages of the Olduvai Normal-Polarity Subchron
- âŠ