116 research outputs found

    Cytoarchitectonic and chemoarchitectonic characterization of the prefrontal cortical areas in the mouse

    Get PDF
    This study describes cytoarchitectonic criteria to define the prefrontal cortical areas in the mouse brain (C57BL/6 strain). Currently, well-illustrated mouse brain stereotaxic atlases are available, which, however, do not provide a description of the distinctive cytoarchitectonic characteristics of individual prefrontal areas. Such a description is of importance for stereological, neuronal tracing, and physiological, molecular and neuroimaging studies in which a precise parcellation of the prefrontal cortex (PFC) is required. The present study describes and illustrates: the medial prefrontal areas, i.e., the infralimbic, prelimbic, dorsal and ventral anterior cingulate and Fr2 area; areas of the lateral PFC, i.e., the dorsal agranular insular cortical areas and areas of the ventral PFC, i.e., the lateral, ventrolateral, ventral and medial orbital areas. Each cytoarchitectonically defined boundary is corroborated by one or more chemoarchitectonic stainings, i.e., acetylcholine esterase, SMI32, SMI311, dopamine, parvalbumin, calbindin and myelin staining

    The development of descending projections from the brainstem to the spinal cord in the fetal sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the fetal sheep is a favoured model for studying the ontogeny of physiological control systems, there are no descriptions of the timing of arrival of the projections of supraspinal origin that regulate somatic and visceral function. In the early development of birds and mammals, spontaneous motor activity is generated within spinal circuits, but as development proceeds, a distinct change occurs in spontaneous motor patterns that is dependent on the presence of intact, descending inputs to the spinal cord. In the fetal sheep, this change occurs at approximately 65 days gestation (G65), so we therefore hypothesised that spinally-projecting axons from the neurons responsible for transforming fetal behaviour must arrive at the spinal cord level shortly before G65. Accordingly we aimed to identify the brainstem neurons that send projections to the spinal cord in the mature sheep fetus at G140 (term = G147) with retrograde tracing, and thus to establish whether any projections from the brainstem were absent from the spinal cord at G55, an age prior to the marked change in fetal motor activity has occurred.</p> <p>Results</p> <p>At G140, CTB labelled cells were found within and around nuclei in the reticular formation of the medulla and pons, within the vestibular nucleus, raphe complex, red nucleus, and the nucleus of the solitary tract. This pattern of labelling is similar to that previously reported in other species. The distribution of CTB labelled neurons in the G55 fetus was similar to that of the G140 fetus.</p> <p>Conclusion</p> <p>The brainstem nuclei that contain neurons which project axons to the spinal cord in the fetal sheep are the same as in other mammalian species. All projections present in the mature fetus at G140 have already arrived at the spinal cord by approximately one third of the way through gestation. The demonstration that the neurons responsible for transforming fetal behaviour in early ontogeny have already reached the spinal cord by G55, an age well before the change in motor behaviour occurs, suggests that the projections do not become fully functional until well after their arrival at the spinal cord.</p

    Estimulação cerebral na promoção da saúde e melhoria do desempenho físico

    Get PDF
    O avanço tecnológico das últimas décadas tem proporcionado o uso eficaz de técnicas não-invasivas na neuromodulação cerebral. Atualmente, as principais técnicas de neuromodulação são a estimulação magnética transcraniana (EMT) e a estimulação transcraniana por corrente contínua (ETCC). Por meio de revisão da literatura, o presente estudo aborda: a) história da estimulação cerebral; b) mecanismos de ação estudados através da neurofisiologia motora, farmacologia, neuroimagem e animais experimentais; c) perspectivas de aplicações da estimulação cerebral para promoção da saúde e melhoria do desempenho físico, incluindo o controle autonômico cardíaco e hipotensão pós-exercício, o controle de apetite e a modulação da fadiga e desempenho físico; e d) aspectos de segurança referentes ao uso da ETCC. Dessa forma, a ETCC parece ser uma técnica efetiva e segura para modular a função cerebral e podemos vislumbrar algumas perspectivas de aplicação no âmbito da ingestão alimentar, saúde cardiovascular e desempenho físico.The technological advances of the last decades have provided the effective use of noninvasive techniques in neuromodulation with concomitant health benefits. Currently, the main neuromodulation techniques are transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Through literature review, this study addresses the a) history of brain stimulation and the b) mechanisms of action studied by motor neurophysiology, pharmacology, neuroimaging, and experimental animals. Moreover, it is presented the c) perspectives for applications of brain stimulation for promoting health and improving physical performance, including cardiac autonomic control and post-exercise hypotension, control and modulation of appetite, fatigue and physical performance. Finally, we describe d) the security aspects related to the use of tDCS. Thus, tDCS seems to be an effective and safe technique to modulate brain function and suggests some application associated to food intake, cardiovascular health and physical performance

    Colchicine affects cortical and amygdalar neurochemical changes differentially after middle cerebral artery occlusion in rats

    No full text
    Recently, we have shown increases in the immunoreactivity for neuropeptide Y and tyrosine hydroxylase in the insular cortex surrounding the focal infarction after middle cerebral artery occlusion. In addition, the immunoreactivity for neuropeptide Y, leucine-enkephalin, dynorphin, and neurotensin increased ipsilaterally in the amygdala. Increases in immunoreactivity were observed in nerve terminals and fibers; changes in the neuropeptides were maximal 3 days after stroke. Local excitotoxic injury of the insular cortex also elicited similar neuropeptide changes unilaterally in the same regions. In this study, immunohistochemistry was used following intracerebroventricular injection of colchicine and stroke to determine whether blockade of axonal transport would prevent these neurochemical changes. These experiments would also locate the putative cellular origins of the neurochemicals involved. Control rats received either colchicine injection or middle cerebral artery occlusion alone. Injection of colchicine enhanced the periinfarct increase in neuropeptide Y but did not alter the increase in tyrosine hydroxylase. The neuropeptide Y increase was observed in local cortical neurons. Colchicine prevented the increases in immunoreactivity for the neuropeptides in the amygdala on the side of stroke, although there were small perikarya that showed immunoreactivity for these neuropeptides within the amygdala on both sides. We conclude that local cortical neurons are responsible for the increase in neuropeptide Y in the periinfarct region, that the cortical increase in tyrosine hydroxylase is not dependent on fast axonal transport, and that axonal transport of signals from the insular cortex to the amygdala is critical in mediating the amygdalar neuropeptide changes seen after stroke.link_to_subscribed_fulltex

    Neuropeptide Y-Y1 receptor antisense oligodeoxynucleotide increases the infarct volume after middle cerebral artery occlusion in rats

    No full text
    An antisense oligodeoxynucleotide selective for the rat neuropeptide Y1 receptor gene was given into the left lateral ventricle in the experimental group of rats, whereas a missense oligodeoxynucleotide or saline was given in the control groups. Some rats were decapitated at 1-2h after the last injection of the oligodeoxynucleotides to examine their effects on the Y1 receptor density in the insular cortex. When compared to the Y1 and Y2 binding density of the untreated rats, the antisense-treated rats had reduced Y1 binding in the insular cortex but the Y2 binding was unaffected; treatment with missense oligodeoxynucleotide had no effect. Other rats underwent a right-sided middle cerebral artery occlusion at 1-2h after the last injection of the oligodeoxynucleotides or saline to examine the effect on the infarction volume at three days following stroke. The antisense treatment resulted in a doubling of the mean infarction volume when compared to the missense or saline treatment.Thus, reducing the Y1 receptor density prior to middle cerebral artery occlusion is harmful. Neuropeptide Y may mediate neuroprotection against focal ischemia via the cortical Y1 receptor, since the immunoreactivity for neuropeptide Y has been shown to increase within the peri-infarct cortex after middle cerebral artery occlusion. Copyright (C) 2000 IBRO.published_or_final_versio

    Neuropeptide changes following excitotoxic lesion of the insular cortex in rats

    No full text
    Following middle cerebral artery occlusion in Wistar rats, the immunoreactivity of neuropeptide Y increased ipsilaterally in the insular cortex and basolateral nucleus of the amygdala. In addition, the immunoreactivity of leucine-enkephalin, dynorphin, and neurotensin increased in the ipsilateral central nucleus of the amygdala. The amygdalar neurochemical changes are likely the result of damage to the insular cortex, although other cortical areas were also affected by the ischemia. To investigate whether damage to the insular cortex is essential in eliciting these changes, a localized lesion of the right or left insular cortex was produced by microinjection of D,L-homocysteic acid. Control animals received injections of vehicle into the right or left insular cortex or D,L- homocysteic acid into the right primary somatosensory cortex. Neurochemical changes were examined immunohistochemically with the peroxidase- antiperoxidase reaction 5 days after the injection. The immunoreactivity of neuropeptide Y increased locally after excitotoxic damage to the insular cortex or primary somatosensory cortex. The amygdalar neurochemical changes, including neuropeptide Y increase in the basolateral nucleus and leucine- enkephalin, dynorphin, and neurotensin increase in the central nucleus, were seen only when the ipsilateral insular cortex was lesioned. These neurochemical changes were similar to those seen 5 days after middle cerebral artery occlusion. Our findings indicate that damage to the insular cortex is essential in eliciting the neurochemical changes in the ipsilateral amygdala. In addition, the change in neuropeptide Y in the cortex appears to be a local reaction occurring irrespective of location of the lesion and glutamate receptor activation may be involved.link_to_subscribed_fulltex
    corecore