4,673 research outputs found

    1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates

    Get PDF
    Electroluminescence from strained n-Ge quantum well light emitting diodes grown on a silicon substrate are demonstrated at room temperature. Electroluminescence characterisation demonstrates two peaks around 1.55 μm and 1.8 μm, which correspond to recombination between the direct and indirect transitions, respectively. The emission wavelength can be tuned by around 4% through changing the current density through the device. The devices have potential applications in the fields of optical interconnects, gas sensing, and healthcare

    A genealogical survey on the main bloodline of the Australian Cattle Dog in Italy

    Get PDF
    This paper presents the results of genetic variability analyses using genealogical data on the main genetic bloodline of the Australian Cattle Dog in Italy, a line that has had a significant impact on the development of the breed. All the genealogical data on the progeny and ancestors of one of the first stallions introduced in Italy were considered, i.e. Cattlefarm's Comeback Jack born on 1/2/1997 in Finland. Animals from the bloodline born between 1962 and 2019 were considered. A total number of 1722 animals were found to be from the line which represents the entire population (WP), including the basic population (BP) and the reference population (RP) defined as the animals currently living. A total of 982 animals were in the RP, with the oldest living dogs born in 2004. A total of 854 dogs were inbred. The average inbreeding coefficient (F) in the RP was 5.1%, while the average inbreeding of the inbred animals was 5.8%. The F was < 0.10 in 711 dogs (77.3% of inbred), and > 0.20 in only 36 dogs (3.91% of inbred). Fifteen traced generations were highlighted. A maximum average inbreeding value (6.45%) was observed in the dogs with 11 traced generations. This research highlighted the good genetic variability of this Australian Cattle Dog bloodline thanks to the efficient management of the breeders who in the past introduced some stallions from abroad. Currently, the lines in Italy are not sufficiently high to prevent inbreeding in the new matings, which is becoming frequent. It is, therefore, important to continue to import new stallions for reproduction to expand the genetic variability. However, at the same time, the old lines need to be preserved genetically, aptitudinally and morphologically, as they are an important heritage of the breed in Italy

    Thermoelectric cross-plane properties on p- and n-Ge/SixGe1-x superlattices

    Get PDF
    Silicon and germanium materials have demonstrated an increasing attraction for energy harvesting, due to their sustainability and integrability with complementary metal oxide semiconductor and micro-electro-mechanical-system technology. The thermoelectric efficiencies for these materials, however, are very poor at room temperature and so it is necessary to engineer them in order to compete with telluride based materials, which have demonstrated at room temperature the highest performances in literature [1]. Micro-fabricated devices consisting of mesa structures with integrated heaters, thermometers and Ohmic contacts were used to extract the cross-plane values of the Seebeck coefficient and the thermal conductivity from p- and n-Ge/SixGe1-x superlattices. A second device consisting in a modified circular transfer line method structure was used to extract the electrical conductivity of the materials. A range of p-Ge/Si0.5Ge0.5 superlattices with different doping levels was investigated in detail to determine the role of the doping density in dictating the thermoelectric properties. A second set of n-Ge/Si0.3Ge0.7 superlattices was fabricated to study the impact that quantum well thickness might have on the two thermoelectric figures of merit, and also to demonstrate a further reduction of the thermal conductivity by scattering phonons at different wavelengths. This technique has demonstrated to lower the thermal conductivity by a 25% by adding different barrier thicknesses per period

    Photo-desorption of H2O:CO:NH3 circumstellar ice analogs: Gas-phase enrichment

    Get PDF
    We study the photo-desorption occurring in H2_2O:CO:NH3_3 ice mixtures irradiated with monochromatic (550 and 900 eV) and broad band (250--1250 eV) soft X-rays generated at the National Synchrotron Radiation Research Center (Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen (m/z = 1) to complex species with m/z = 69 (e.g., C3_3H3_3NO, C4_4H5_5O, C4_4H7_7N), supporting the enrichment of the gas phase. At low number of absorbed photons, substrate-mediated exciton-promoted desorption dominates the photo-desorption yield inducing the release of weakly bound (to the surface of the ice) species; as the number of weakly bound species declines, the photo-desorption yield decrease about one order of magnitude, until porosity effects, reducing the surface/volume ratio, produce a further drop of the yield. We derive an upper limit to the CO photo-desorption yield, that in our experiments varies from 1.4 to 0.007 molecule photon−1^{-1} in the range ∼1015−1020\sim 10^{15} - 10^{20}~absorbed photons cm−2^{-2}. We apply these findings to a protoplanetary disk model irradiated by a central T~Tauri star
    • …
    corecore