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Electroluminescence from strained n-Ge quantum well light emitting diodes grown on a silicon

substrate are demonstrated at room temperature. Electroluminescence characterisation

demonstrates two peaks around 1.55 lm and 1.8 lm, which correspond to recombination between

the direct and indirect transitions, respectively. The emission wavelength can be tuned by around

4% through changing the current density through the device. The devices have potential

applications in the fields of optical interconnects, gas sensing, and healthcare. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4767138]

There is presently increased interest in using Ge as an

active material on Si substrates to realise light emitting

diodes (LEDs), lasers, and photodetectors that can either be

integrated with complementary metal-oxide semiconductor

electronics or provide added functions for More-than-Moore

applications.1 The potential applications include fibre-to-the-

home, chip-to-chip optical interconnects in addition to longer

wavelength healthcare and pollution monitoring applica-

tions.2 Previous works have demonstrated electrolumines-

cence from Ge p-i-n structures or other configurations grown

on top of standard Si wafers.3–7 Electroluminescence has

also been demonstrated from Ge quantum well devices but

so far the emission has been at wavelengths below 1.45 lm

(Ref. 7) which is too low for the important 1.55 lm for tele-

coms. Longer wavelengths are also desirable for pollution

monitoring and bio-sensing applications. The higher concen-

tration of carriers in a two dimensional (2D) quantum well

system compared to bulk three dimensional devices should

ultimately allow higher efficiencies with lower thresholds

ideal for all applications. Tensile-strained Ge QWs have

demonstrated direct-gap transitions.8,9 In this work, electro-

luminescence from strained 10 period n-Ge multiple quan-

tum well (MQW) LEDs grown directly on a silicon wafer is

presented which produces electroluminescence at the impor-

tant 1.55 lm wavelength at room temperature (298 K).

The material was grown on a p-Si (100) substrate with a re-

sistivity of 1 Xcm. The substrate was degassed at 316 �C for

10 min before loading into a low-energy plasma-enhanced

chemical vapour deposition (LEPECVD) chamber.7,10 The het-

erolayer design is shown in Fig. 1. A 2.1 lm two step buffer

with first a 600 nm relaxed layer of Si0:61Ge0:39 was grown fol-

lowed by 1.5lm relaxed Si0:048Ge0:952. Next 100 nm of

p-Si0:048Ge0:952 (NA ¼ 3� 1018 cm�3 doped from B2H6) was

grown as required for the bottom Ohmic contact. The Ge con-

centrations (and quantum well thicknesses) for all heterolayers

was measured after growth using x-ray diffraction (XRD). A

30 nm spacer of Si0:048Ge0:952 ðNA ¼ 5� 1017 cm�3Þ was

grown before the active quantum well region. The active region

consists of 10 periods of strained 11.2 nm n-Ge quantum wells

(ND ¼ 1� 1019 cm�3 doped with PH3) and 8.5 nm

Si0:014Ge0:986 barriers. A final cap of 10 nm of Si0:048Ge0:952 fol-

lowed by 3 nm of Si was grown to produce a Schottky top con-

tact that would allow hot electron injection into the C-valley

with the aim of producing more efficient direct recombination.

Whilst the PH3 was only switched on during the growth of the

quantum wells, due to segregation effects, all the heterolayers

grown after the first quantum well will be doped with significant

fractions of the n-type doping level.11 For this strain relaxed

buffer Ge concentration, the calculated Matthews and Blakeslee

critical thickness is 283 nm.12

The band structure was calculated using a self-

consistent Poisson-Schr€odinger solver with the deformation

potentials from Reference 13 and the results for a single

FIG. 1. The heterolayer design for the device. Right: Optical microscope

picture of a completed LED.a)Douglas.Paul@glasgow.ac.uk.
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quantum well are shown in Fig. 2. An 8-band k.p model was

used for the hole bands and the C-valley whilst a 1 band tool

was used to find the L- and D-valley bands and subband

states. The present thin buffer resulted in a tensile strain of

0.13% as measured by XRD after the sample was cooled to

room temperature and the modelling of the bands and sub-

band states has taken account of this strain.13 For both the

L- and C-valleys, only a single subband for each valley is

confined in the quantum well. The L-valley subband state is

very weakly confined in the quantum well due to the small

conduction band discontinuity of only 8 meV. At room tem-

perature, confinement due to the L-valley quantum well is

unlikely to be observed. The C-valley is below both D-valley

bands due to the tensile strain in the substrate. The C-valley

quantum well has a discontinuity of 19 meV with a single

confined state that due to the low effective mass of 0:038m0

(where m0 is the free electron mass), the subband states in

each quantum well overlap to form a miniband with width

calculated to be 8.4 meV. Modelling of the valence band

demonstrated that the ground state is the heavy-hole (HH)

and the lowest subband is the HH1. The tensile strain is

therefore not great enough to move the LH band above the

HH band. The calculated lowest direct transition is C1 to

HH1 at 0.817 eV (1.52 lm wavelength) and the indirect L1

subband to HH1 is 0.663 eV (1.89 lm).

Cylindrical mesas ranging from 10 lm to 500 lm in di-

ameter (see Fig. 1) were defined by a Vistec VB6 electron

beam lithography tool with hydrogen silsesquioxane (HSQ)

resist and then etched down anisotropically using a fluorine

based chemistry in an inductively coupled plasma reactive

ion etch tool. 50 nm of Ni was deposited by electron-beam

evaporation for the bottom contact and this was patterned by

lift-off and subsequently annealed at 340 �C for 30 s in a

rapid thermal annealer (RTA).14 The process provides bot-

tom Ohmic contacts with measured specific contact resistiv-

ities of 4� 10�8 Xcm2. An unannealed top contact of 10 nm

of Ti followed by 50 nm of Al was deposited to produce a

Schottky top contact which could inject carriers above the

conduction band edge. The whole structure was passivated

with Si3N4 and via holes were etched to allow interconnects

to the contacts. Bond pads of 600 nm of Al were deposited

and finally, the device was wire bonded to a chip carrier in

order to connect the LED to an external power supply for

characterisation. All results in this publication were from

devices of 300 lm diameter measured at room temperature.

The current-voltage characteristics are shown in Fig. 3.

Larger currents flow when the device is forward biased with

electrons being injected into the conduction band from the

Schottky top contact. The dark current is comparable to

some of the best reported from Ge on Si photodetectors.15

Both the photoluminescence (PL) and electroluminescence

from the LED were measured using a Bruker Vertex 70v

FTIR system. The FTIR system uses a calcium fluoride

beamsplitter and a room temperature extended InGaAs de-

tector, which can detect radiation between 0.8 and 2.5 lm.

All measurements were undertaken in surface emission ge-

ometry which corresponds to xy-polarization (TE polariza-

tion). The selection rules for such polarization allow the

following transitions:13 C1 to HH1, L1 to HH1, C1 to LH1,

and L1 to LH1. Fig. 4 shows the PL for 580 nm CW excita-

tion. Comparison with the band structure modelling of Fig. 1

indicates that the sharper peak just above 1.5 lm is the

C-valley to HH1 transition and the broader 1.8 lm peak is

the L-valley to HH1 indirect transition. Above 2 lm is black-

body emission under CW illumination. Fig. 5 shows the elec-

troluminescence as a function of current under CW

conditions at room temperature. As the current is increased,

the direct bandgap (C-valley to HH1) electroluminescence

increases compared to the indirect (L-valley to HH1) transi-

tions. Also the blackbody contribution demonstrates signifi-

cant increases as the current is increased especially beyond

the 2 lm wavelength.

Fig. 6 demonstrates the total electroluminescence-

current (LI) data from the LEDs. Below 210 A=cm2, the gra-

dient of the LI curve is below 1 whilst above this point, the

gradient increases to 1.5 and it is clear that blackbody emis-

sion from Joule heating of the sample starts to become more

significant in the measured electroluminescence power. Pre-

vious publications have indicated that heating can help excite

FIG. 2. The conduction bands for a single quantum well in the device as cal-

culated by self-consistent Poisson-Schr€odinger solver at 300 K. The confined

subband states for the L- and C-valleys are also plotted.

FIG. 3. The current-voltage characteristics of the device at room

temperature.
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carriers from the L-valley to the C-valley and increase the

electroluminescence efficiency and output power.7,16,17 A

similar effect is observed in the present devices as the ratio

of the emission from the direct bandgap compared to the

indirect bandgap emission increases with increasing current

density but the use of the longer wavelength detector in this

work also demonstrates the resulting strong spectral contri-

bution of the blackbody emission at longer wavelengths.

Fig. 7 shows the shift in the direct bandgap recombina-

tion peak as a function of current density. As the current den-

sity is increased to 420 A=cm2, the emission wavelength is

increased by around 4% as shown in Fig. 7. The clear red-

shift in the direct bandgap electroluminescence recombina-

tion peak as a function of increasing current demonstrates

the Joule heating of the device with the resultant reduction in

the direct bandgap (the indirect bandgap is also reduced by

the heating). The bandgap dependence of Ge was modelled

by Varshni18 and the expected variation is inverse linearly

proportional to the temperature when the semiconductor is

well above the Debye temperature of 374 K for Ge. Curve

fits to the blackbody part of the spectra in Fig. 5 indicate that

the electron temperature is above 400 K for current densities

of 50 A=cm2 and above thereby indicating that the bandgap

is decreasing with a linear variation of temperature. As Joule

heating in semiconductors results in a near linear tempera-

ture rise with current density, the linear variation of wave-

length with current density in Fig. 7 therefore agrees with

the Varshni model for the bandgap for temperatures above

the Debye temperature.18 At 300 A=cm2, the direct recombi-

nation electroluminescence is at the important 1.55 lm

wavelength for telecoms applications.

To date, the majority of Ge quantum well devices have

only demonstrated PL emission characterisation through

FIG. 7. The central position of the direct bandgap (C-valley to HH) electro-

luminescent peak as a function of current density at room temperature. The

line is a linear fit to the data.

FIG. 4. The photoluminescence of the device at room temperature using a

580 nm pump source.

FIG. 5. The electroluminescence of the device at room temperature as a

function of CW excitation currents.

FIG. 6. The electroluminescence versus current density plot of the device at

room temperature.
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optical pumping. Most electroluminescence has been demon-

strated with bulk n-Ge apart from a single result with emis-

sion below 1.45 lm wavelength.7 The present n-Ge quantum

well devices have a narrow direct recombination peak

(�80 nm full width half maximum) followed by the drop in

electroluminescence to near zero levels at higher energies

(Fig. 5). This can be explained by the sharp two 2D density

of states which results in only the C-valley to HH1 and

L-valley to HH1 recombination transitions being observed

under electroluminescence, unlike the bulk Ge devices. Such

2D radiative transitions are ultimately expected to produce

higher gain and lower thresholds if a laser can be produced.3

The quantum well structures also provide a natural design

for confining (and guiding) the mode and therefore the ex-

pectation is that this approach is interesting to produce prac-

tical Ge electroluminescent LEDs and lasers on silicon

substrates.

The direct bandgap C-valley to HH1 electrolumines-

cence from n-Ge quantum wells on silicon substrates has

been demonstrated from LEDs at the important 1.55 lm

wavelength with CW operation. The emission wavelength of

the devices can be tuned by approximately 4% through

changing the current density. At higher wavelengths, the

indirect L-valley to HH1 transition is observed before black-

body emission is observed. Such devices may be integrable

into Si photonic circuits, and lasing may be feasible with

such designs when fabricated into a suitable cavity.
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