886 research outputs found

    Calculation of laminar and turbulent boundary layers for two-dimensional time-dependent flows

    Get PDF
    A general method for computing laminar and turbulent boundary layers for two-dimensional time-dependent flows is presented. The method uses an eddy-viscosity formulation to model the Reynolds shear-stress term and a very efficient numerical method to solve the governing equations. The model was applied to steady two-dimensional and three-dimensional flows and was shown to give good results. A discussion of the numerical method and the results obtained by the present method for both laminar and turbulent flows are discussed. Based on these results, the method is efficient and suitable for solving time-dependent laminar and turbulent boundary layers

    Axi-Dilaton Gravity in D \geq 4 Dimensional Space-Times with Torsion

    Get PDF
    We study models of axi-dilaton gravity in space-time geometries with torsion. We discuss conformal re-scaling rules in both Riemannian and non-Riemannian formulations. We give static, spherically symmetric solutions and examine their singularity structure

    Prediction of boundary-layer characteristics of an oscillating airfoil

    Get PDF
    The evolution of unsteady boundary layers on oscillating airfoils is investigated by solving the governing equations by the Characteristic Box scheme. The difficulties associated with computing the first profile on a given time line, and the velocity profiles with partial flow reversal are solved. A sample calculation is performed for an external velocity distribution typical of those found near the leading edge of thin airfoils. The viability of the calculation procedure is demonstrated

    Calculation of boundary layers near the stagnation point of an oscillating airfoil

    Get PDF
    The results of an investigation of boundary layers close to the stagnation point of an oscillating airfoil are reported. Two procedures for generating initial conditions, the characteristics box scheme and a quasi-static approach, were investigated, and the quasi-static approach was shown to be appropriate provided the initial region was far from any flow separation. With initial conditions generated in this way, the unsteady boundary layer equations were solved for the flow in the leading edge region of a NACA 0012 airfoil oscillating from 0 to 5 deg. Results were obtained for both laminar and turbulent flow, and, in the latter case, the effect of transition was assessed by specifying its occurrence at different locations. The results demonstrate the validity of the numerical scheme and suggest that the procedures should be applied to calculation of the entire flow around oscillating airfoils

    A general method for calculating three-dimensional compressible laminar and turbulent boundary layers on arbitrary wings

    Get PDF
    The method described utilizes a nonorthogonal coordinate system for boundary-layer calculations. It includes a geometry program that represents the wing analytically, and a velocity program that computes the external velocity components from a given experimental pressure distribution when the external velocity distribution is not computed theoretically. The boundary layer method is general, however, and can also be used for an external velocity distribution computed theoretically. Several test cases were computed by this method and the results were checked with other numerical calculations and with experiments when available. A typical computation time (CPU) on an IBM 370/165 computer for one surface of a wing which roughly consist of 30 spanwise stations and 25 streamwise stations, with 30 points across the boundary layer is less than 30 seconds for an incompressible flow and a little more for a compressible flow

    A Computer Program for Calculating Three-Dimensional Compressible Laminar and Turbulent Boundary Layers on Arbitrary Wings

    Get PDF
    A computer program for calculating three dimensional compressible laminar and turbulent boundary layers on arbitrary wings is described and presented. The computer program consists of three separate programs, namely, a geometry program to represent the wing analytically, a velocity program to compute the external velocity components from a given experimental pressure distribution and a finite difference boundary layer method to solve the governing equations for compressible flows. To illustrate the usage of the computer program, three different test cases are presented and the preparation of the input data as well as the computed output data is discussed in some detail

    Relative advantages of thin-layer Navier-Stokes and interactive boundary-layer procedures

    Get PDF
    Numerical procedures for solving the thin-shear-layer Navier-Stokes equations and for the interaction of solutions to inviscid and boundary-layer equations are described and evaluated. To allow appraisal of the numerical and fluid dynamic abilities of the two schemes, they have been applied to one airfoil as a function of angle of attack at two slightly different Reynolds numbers. The NACA 0012 airfoil has been chosen because it allows comparison with measured lift, drag, and moment and with surface-pressure distributions. Calculations have been performed with algebraic eddy-viscosity formulations, and they include consideration of transition. The results are presented in a form that allows easy appraisal of the accuracy of both procedures and of the relative costs. The interactive procedure is computationally efficient but restrictive relative to the thin-layer Navier-Stokes procedure. The latter procedure does a better job of predicting drag than does the former. In both procedures, the location of transition is crucial for accurate or detailed computations, particularly at high angles of attack. When the upstream influence of pressure field through the shear layer is important, the thin-layer Navier-Stokes procedure has an edge over the interactive procedure

    Calculation of three-dimensional compressible laminar and turbulent boundary layers. Calculation of three-dimensional compressible boundary layers on arbitrary wings

    Get PDF
    A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows
    corecore