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1 Introduction

Gravitational interactions are formulated on a space-time manifoldM equipped
with a metric tensor field g and a metric compatible connection ∇ defined
on the bundle of orthonormal frames. Most commonly, interactions coupled
with gravity are studied in a geometry where the connection ∇ is constrained
to be the unique torsion-free Levi-Civita connection. In this context, mas-
sive test particles are postulated to follow time-like geodesics associated with
space-time metric and torsion-free connection. On the other hand a metric
compatible connection with torsion provides new independent degrees of free-
dom. It has been shown that the scalar field interactions coupled with gravity
can yield connections with non-zero torsion [1]. In that case, space-time his-
tory of particles may be determined by the autoparallels of a connection with
torsion [2, 3, 4]. We know that the independent variation of any action with
respect to connection determines space-time torsion. In particular, bosonic
part of effective superstring interactions can produce a torsion that is pro-
portional to the gradient of the dilaton (scalar) field. Hence, it would be of
interest to formulate such type of interactions in frames where torsion exists.

It is an exciting conjecture that all superstring models belong to an eleven
dimensional M-theory that accommodates their apparent dualities. M-theory
as a classical theory can be considered in a low-energy limit where only
the low-lying excitation modes contribute to an effective field theory. As
such it would be the same as D = 11 dimensional supergravity theory. A
subsequent Kaluza-Klein reduction to D = 10 dimensions would bring it
to a string model whose gravitational sector consists of space-time metric
tensor g, dilaton scalar φ and the axion potential (p+ 1)-form A that would
minimally couple to p-branes. We call such an effective gravitational field
theory an axi-dilaton gravity in D dimensions. Axi-dilaton gravity theory
can be studied in the Einstein frame. However, by working out the theory
in Brans-Dicke frame [5], one can see the difference between formulation of
theory with a torsion-free connection and formulation with a connection with
torsion. In the latter case, we vary the action treating the metric and the
connection as independent variables. We have shown that the corresponding
field equations in both cases with or without torsion are equivalent provided a
shift in the Brans-Dicke coupling parameter ω is allowed. We further assume
a direct coupling of the kth power of the dilaton scalar with the axionic kinetic
term. The conformal scaling properties are examined in both geometries. In
Section:3 we investigate a class of static, spherically symmetric solutions
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which depend on the coupling parameters ω and k in dimensions D ≥ 4. In
particular, we point out a class of conformal black hole solutions obtained
for the scale invariant parameter values.

2 Axi-dilaton Gravity In D Dimensions

We start with an action
I[g, φ, A] =

∫

M
L (1)

where the Lagrangian density D-form L is given in Brans-Dicke frame in
a geometry based on Riemannian formulation, by imposing as a constraint
that the connection is Levi-Civita:

L =
φ

2
Rab ∧ ∗ (ea ∧ eb)−

ω

2φ
dφ ∧ ∗dφ−

φk

2
H ∧ ∗H. (2)

Here the basic gravitational variables are the co-frame 1-forms ea in terms of
which the space-time metric g = ηabe

a⊗eb where ηab = diago(−+++++ ...).
Hodge ∗-map is defined so that the oriented volume form ∗1 = e0 ∧ e1 ∧
... ∧ eD−1. Levi-Civita connection 1-forms (0)ωa

b are obtained from the first
Cartan structure equations

dea +(0) ωa
b ∧ eb = 0 (3)

where the metric compatibility requires (0)ωab = −(0)ωba and corresponding
curvature 2-forms are obtained from the second Cartan structure equations

(0)Rab = d (0)ωab +(0) ωa
c ∧

(0) ωcb. (4)

φ is the dilaton 0-form and H is a (p+2)-form field that is derived from the
axion potential (p + 1)-form A so that H = dA. ω and k are real coupling
parameters. Co-frame ea variations of this action lead to the Einstein field
equations

1

2
φ (0)Rab ∧ ∗(ea ∧ eb ∧ ec) = −

ω

2φ
τc[φ]−

φk

2
τc[H ]−(0) D(ιc(∗dφ)) (5)

where dilaton and axion stress-energy (D − 1)-forms are given, respectively,
by

τc[φ] = (ιcdφ ∧ ∗dφ+ dφ ∧ ιc(∗dφ)) (6)
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and
τc[H ] = (ιcH ∧ ∗H − (−1)pH ∧ ιc(∗H)). (7)

φ variation of (2) yields

1

2
(0)Rab ∧ ∗(ea ∧ eb) = −ωd

(

∗dφ

φ

)

−
ω

2φ2
dφ ∧ ∗dφ+ k

φk−1

2
H ∧ ∗H (8)

We trace (5) by considering its exterior multiplication by ec and multiply (8)
by (D − 2)φ. The resulting two equations are then subtracted side by side
to obtain the dilaton field equation

(

ω +
D − 1

D − 2

)

d ∗ dφ =
φk

2
αH ∧ ∗H, (9)

where α = 2p−(D−4)
D−2

+ k. Finally, independent axion potential A variations
lead to

d(φk ∗H) = 0 (10)

with dH = 0.
Next we consider the following action in which connection 1-forms are

varied independently of the metric of space-time:

L =
φ

2
Rab ∧ ∗ (ea ∧ eb)−

c

2φ
dφ ∧ ∗dφ−

φk

2
H ∧ ∗H. (11)

Co-frame variations of this action give the Einstein field equations

1

2
φRab ∧ (ea ∧ eb ∧ ec) = −

c

2φ
τc[φ]−

1

2
φkτc[H ]. (12)

with τc[φ] and τc[H ] are as given by (6) and (7), respectively. Scalar field
variations of the action give

1

2
Rab ∧ (ea ∧ eb) = −cd

(

∗dφ

φ

)

−
c

2φ2
dφ ∧ ∗dφ+ k

φk−1

2
H ∧ ∗H. (13)

When we trace (12) and compare it with (13) multiplied by (D − 2)φ, we
obtain the dilaton field equation

c d ∗ dφ =
α

2
φkH ∧ ∗H. (14)
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Independent connection variations of (11) lead to

D

(

φ

2
∗ (ea ∧ eb)

)

= 0 (15)

from which we can readily solve for the torsion 2-forms:

T a = ea ∧
dφ

(D − 2)φ
. (16)

We can decompose the connection 1-forms as

ωa
b =

0 ωa
b +Ka

b (17)

where contorsion one-forms Ka
b satisfy

Ka
b ∧ eb = T a. (18)

Substitution of (16) into (18) gives

Ka
b =

1

(D − 2)φ
(eaιbdφ− ebι

adφ). (19)

Curvature 2-forms Rab can be similarly decomposed as

Rab =(0) Rab +(0) DKab +Ka
c ∧Kcb (20)

where
(0)DKab = dKab +(0) ωb

c ∧Kac +(0) ωa
c ∧Kcb. (21)

Then we calculate

Rab ∧ ∗(ea ∧ eb ∧ ec) =
(0) Rab ∧ ∗(ea ∧ eb ∧ ec) +

2

φ
(0)D(ιc(∗dφ))

−
2(D − 1)

(D − 2)φ2
dφ ∧ ιc(∗dφ)−

D − 1

(D − 2)φ2
ιc(dφ ∧ ∗dφ) (22)

and

Rab∧∗(ea∧eb) =
(0) Rab∧∗(ea∧eb)−

2(D − 1)

(D − 2)
d

(

∗
dφ

φ

)

−
D − 1

(D − 2)φ2
dφ∧∗dφ.

(23)
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If we insert (23) into (11), action density reduces to

L =
1

2
φ (0)Rab ∧ ∗(ea ∧ eb)−

(

c−
D − 1

D − 2

)

1

2φ
dφ ∧ ∗dφ−

φk

2
H ∧ ∗H (24)

upto a closed form. Substituting (22) into the Einstein field equations (12),
we obtain

1

2
φ (0)Rab ∧ ∗(ea ∧ eb ∧ ec) = −

(

c−
D − 1

D − 2

)

1

2φ
τc[φ]

−
φk

2
τc[H ]−0 D (ιc(∗dφ)) . (25)

Similarly, substituting (23) into the dilaton field equation (13), we obtain

1

2
(0)Rab ∧ ∗(ea ∧ eb) =

(

c− D−1
D−2

)

2φ2
dφ ∧ ∗dφ−

(

c−
D − 1

D − 2

)

1

φ
d(∗dφ)

+k
φk−1

2
H ∧ ∗H. (26)

We have thus shown that if the coupling constants are identified as

ω = c−
D − 1

(D − 2)
, (27)

the field equations (25) and (26) are equivalent to the field equations (5) and
(8).

Let us now consider conformal rescalings of the metric induced by the
co-frame rescalings

ea → eσ(x)ea. (28)

These imply the transformation

(0)ωab →
(0) ωab − ebιadσ + ιbdσea (29)

of the Levi-Civita connection 1-forms. If we also postulate the following
rescaling of the Brans-Dicke scalar field

φ → e−(D−2)σφ, (30)

then a straightforward calculation shows that the action (2) is scale invariant
for ω = −D−1

D−2
and k = −2p+4−D

D−2
, or for c = 0 and α = 0. In terms of the
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geometry described by the action (11), the above rescaling rules imply the
transformation

Kab → Kab + ιadσeb − ιbdσea (31)

so that the connection with torsion does not scale:

ωab → ωab. (32)

Hence
Rab → Rab (33)

and
T a → eσ(T a + dσ ∧ ea). (34)

We can reformulate our axi-dilaton gravity in the so-called Einstein frame
by adopting the co-frames

ẽa =

(

φ

φ0

)
1

(n−1)

ea (35)

where φ0 is a constant. The new co-frames ẽa become orthonormal with
respect to space-time metric

g̃ =

(

φ

φ0

)
2

(n−1)

g. (36)

In terms of this metric the associated Hodge dual is denoted by ∗̃. For an
arbitrary frame independent p-form Ω,

∗ Ω =

(

φ

φ0

)

2p−(n+1)
(n−1)

∗̃Ω (37)

In the reformulation of action (2) in terms of g̃, new connection fields ω̃ab

can be written in terms of (0)ωab as

ω̃ab = Γab +(0) ωab (38)

where,

Γab =
1

(D − 2)φ
(eaιbdφ− ebιadφ). (39)
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The corresponding curvature 2-forms become

R̃ab =(0) Rab +(0) DΓab + Γac ∧ Γc
b. (40)

In terms of g̃, (2) becomes

L =
1

2
φ0R̃

ab ∧ ∗̃(ẽa ∧ ẽb)−
c

2
φ0

1

φ2
dφ ∧ ∗̃dφ−

φα

2
φ
(k−α)
0 H ∧ ∗̃H, (41)

upto a closed form. Introducing a massless scalar field Φ = ln| φ
φ0
|, (41) reads

L =
1

2
φ0R̃

ab ∧ ∗̃(ẽa ∧ ẽb)−
c

2
φ0dΦ ∧ ∗̃dΦ−

1

2
(φ0)

k exp(αΦ)H ∧ ∗̃H. (42)

Einstein field equations obtained by co-frame variations of (42) are

1

2
φ0R̃

ab ∧ ∗̃(ẽa ∧ ẽb ∧ ẽc) = −
c

2
φ0τ̃c[Φ]−

1

2
(φ0)

keαΦτ̃c[H ], (43)

where
τ̃c[Φ] = {ι̃cdΦ ∧ ∗̃dΦ+ dΦ ∧ ι̃c(∗̃dΦ)} (44)

and
τ̃c[H ] = {ι̃cH ∧ ∗̃H − (−1)pH ∧ ι̃c(∗̃H)}. (45)

On the other hand variations with respect to connection 1-forms ω̃ab yield

D(ω̃)(∗̃(ẽa ∧ ẽb)) = 0, (46)

from which we obtain T̃ a = 0. Finally, we give the scalar field equation

cφ0d(∗̃dΦ) =
1

2
(φ0)

kαeαΦH ∧ ∗̃H. (47)

and the axion field equation

d
(

eαΦ∗̃H
)

= 0. (48)

Interestingly, by another conformal rescaling of the co-frames in Einstein
frame, we can obtain the so-called string frame action. Applying the trans-
formation

êa = exp(
2Φ

D − 2
)ẽa (49)
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where êa are assumed to satisfy the torsion-free structure equations

dêa + ω̂a
b ∧ êb = 0 , (50)

the action density (42) becomes

L = e−2Φ
{

1

2
φ0R̂

ab ∧ ∗̂(êa ∧ êb)−
1

2
φ0k̂dΦ ∧ ∗̂dΦ

}

−
1

2
(φ0)

k exp(α0Φ)H ∧ ∗̂H,(51)

upto a closed form where coupling parameters are redefined as

α0 = (2p+ 4−D)
3

D − 2
+ k (52)

and

k̂ = c−
4(D − 1)

(D − 2)
. (53)

Action density (51) is called the string frame action in D dimensions. We
would like to remark that it is possible to start directly from (51) and make
independent co-frame êa and connection ω̂ab variations. Independent connec-
tion variations yield

D(ω̂)(e−2Φ∗̂(êa ∧ êb)) = 0 (54)

from which we can obtain torsion 2-forms T̂ a = 2
D−2

dΦ ∧ êa [6]. Co-frame
variations on the other hand yield

1

2
φ0e

−2ΦR̂ab ∧ ∗̂(êa ∧ êb ∧ êc) = −
1

2
φ0k̂e

−2Φτ̂c[Φ]

−
1

2
(φ0)

keα0Φτ̂c[H ], (55)

where
τ̂c[Φ] = {ι̂cdΦ ∧ ∗̂dΦ+ dΦ ∧ ι̂c(∗̂dΦ)} (56)

and
τ̂c[H ] = {ι̂cH ∧ ∗̂H − (−1)pH ∧ ι̂c(∗̂H)}. (57)

The scalar field Φ variation of (51) gives

φ0e
−2ΦR̂ab ∧ ∗̂(êa ∧ êb) = φ0k̂e

−2ΦdΦ ∧ ∗̂dΦ

+k̂φ0d
(

e−2Φ∗̂dΦ
)

−
1

2
(φ0)

kα0e
α0ΦH ∧ ∗̂H. (58)
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We consider exterior multiplication of (55) by êc and then multiply the equa-
tion by 2

2−D
. If we subtract the resulting equation from (58) and use (52),

we obtain the scalar field equation

φ0k̂d
(

e−2Φ∗̂dΦ
)

=
1

2
(φ0)

kαeα0ΦH ∧ ∗̂H. (59)

Finally, the gauge field A variation yields

d
(

eα0Φ∗̂H
)

= 0. (60)

The field equations without torsion in the string frame can be determined
exactly in the same way we explained above.

3 Static, Spherically Symmetric Solutions

In this section we investigate a class of static, spherically symmetric solutions
of the axi-dilaton field equations with p = D − 4, in the Brans-Dicke frame.
Such solutions were studied previously in the Einstein and string frames
[7, 8, 9, 10] in Riemannian geometries. We emphasize again that classical
solutions of the coupled field equations given in the Brans-Dicke, Einstein and
string frames, whether we consider a space-time geometry with or without
torsion, are all conformally equivalent to each other. However, the scale
invariant case can be most conveniently studied in the Brans-Dicke frame
[11]. In terms of spherical polar coordinates (t, r, θi, i = 1, 2, 3, · · · , D − 2),
we take the metric

g = −f 2(r)dt⊗ dt+ h2(r)dr ⊗ dr +R2(r)dΩD−2, (61)

axion field (D − 2)-form

H = g(r)e1 ∧ e2 ∧ e3 ∧ · · · ∧ eD−2, (62)

and the dilaton scalar
φ = φ(r). (63)

Case: c 6= 0, k 6= −D−4
D−2

.

The solutions are given by the metric functions [11]

R(r) = r

(

1−
(

C1

r

)n−2
)α3

f(r) =
(

1−
(

C2

r

)n−2
)α4

(

1−
(

C1

r

)n−2
)α5

h(r) =
(

1−
(

C2

r

)n−2
)α2

(

1−
(

C1

r

)n−2
)α1

(64)
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together with

φ(r) =

(

1−
(

C1

r

)n−2
)

2γ
α

(65)

and

g(r) =
Q

RD−2
(66)

where the exponents are related by

α1 = γ

(

1

(D − 3)
−

2

(D − 2)α

)

−
1

2
, α2 = −

1

2
,

α3 =

(

1

(D − 3)
−

2

(D − 2)α

)

γ ,

α4 =
1

2
, α5 =

1

2
−

(

1 +
2

(D − 2)α

)

γ.

Here, we introduced parameters

γ =
(D − 2)α2

4c(D − 3) + (D − 2)α2
(67)

and

c = ω +
D − 1

D − 2
. (68)

The integration constants C1 and C2 should satisfy

Q2 =
4c(C1C2)

D−3(D − 3)2

α2
. (69)

These solutions are asymptotically flat as r → ∞. Therefore the following
physical constants can be identified:
We define the mass

2M ≡ lim
r→∞

rD−3(1− f 2) = (C2)
D−3 +

(

1−
4γ

(D − 2)α
− 2γ

)

(C1)
D−3 (70)

The scalar charge is

Σ ≡ lim
r→∞

φ′

φ
rD−2 = 2(D − 3)(C1)

D−3 γ

α
. (71)
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Magnetic charge can be found from

Q ≡ lim
r→∞

grD−2 = Q. (72)

Eliminating the integration constants (C1)
D−3 and (C2)

D−3 above, we obtain
one relationship among our three physical parameters:

Q2 =
2(D − 3)Σ

α
c

{(

2γ +
4γ

(D − 2)α
− 1

)

Σα

2(D − 3)γ
+ 2M

}

(73)

The BPS bound is determined from this relationship since Σ is a real param-
eter. This implies the following inequality satisfied by the mass and charge:

M ≥

√

√

√

√

4c(D − 3)− 4α− (D − 2)α2

4c(D − 2)(D − 3)2
|Q| (74)

provided
α2(D − 2) + 4α ≤ 4c(D − 3). (75)

Assume that C2 > C1. Then, for Q 6= 0, the metric functions admit an outer
horizon at r+ = C2 and an inner horizon at r− = C1. The corresponding
curvature scalar (of the Levi-Civita connection)

(0)R =
1

r2(D−2)
{

(

D − 4

D − 2
−

(D − 1)α

c(D − 2)

)

Q2

(

1−
(

C1

r

)D−3
){

2(k−1)γ
α

−2(D−2)α3}

−ω

(

2γ

α
(C1)

D−3(D − 3)
)2
(

1−
(

C1

r

)D−3
)−2−2α1

(

1−
(

C2

r

)D−3
)

}(76)

is finite at r+ = C2. The calculation of quadratic curvature invariant on the
other hand yields

∗ (Rab ∧ ∗Rab) ∼

(

1−
(

C1

r

)D−3
)−4−4α1

r−4(D−2), (77)

which shows that r = 0 is an essential singularity. So the solutions above
describe black holes.

It is also interesting to see that if geometry of space-time is equipped with
a connection with torsion, then the corresponding curvature scalar

R =
1

r2(D−2)
{
(

D − 4

D − 3

)

Q2

(

1−
(

C1

r

)D−3
){

2(k−1)γ
α

−2(D−2)α3}

−c

(

2γ

α
(C1)

D−3(D − 3)
)2
(

1−
(

C1

r

)D−3
)−2−2α1

(

1−
(

C2

r

)D−3
)

} (78)
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is again finite at r+ = C2 while r = 0 is an essential singularity. Hence, the
nature of the horizon and the essential singularity are not affected by torsion.

Case: c = 0, k = −D−4
D−2

.

A class of asymptotically flat solutions to conformally scale invariant the-
ory has the following form:

R(r) = r

(

1−
(

E1

r

)D−3
)− β

(D−2)

f(r) =
(

1−
(

E1

r

)D−3
)

1
2
− β

(D−2)
(

1−
(

E2

r

)D−3
)1/2

h(r) =
(

1−
(

E1

r

)D−3
)− 1

2
− β

(D−2)
(

1−
(

E2

r

)D−3
)− 1

2

φ(r) =
(

1−
(

E1

r

)D−3
)β

g(r) = Q
RD−2

(79)

where E1 and E2 are constants that satisfy,

(E2E1)
D−3 =

Q2

(D − 2)(D − 3)
. (80)

β is a free parameter. The special case of parameter values Q = 0 and
E2 = 0 brings (79) to Einstein-conformal scalar field solution of Bekenstein
[12]. Bekenstein proposed a black hole interpretation of his solutions based
on the study of conformal world lines [13]. The scalar particles are postulated
to follow geodesic world-lines in Brans-Dicke theory. On the other hand, if
space-time geometry is equipped with a connection with torsion, history of
particles would be an autoparallel of a connection with torsion [3]. It has
been shown that the conformal world-lines are nothing but the autoparallel
curves in the non-Riemannian reformulation of the Brans-Dicke theory [2].
In this case, the scalar curvature of the connection with torsion is calculated
as

Rc =
D − 4

D − 2
Q2

(

1−
(

E1

r

)D−3
)

2β
(D−2) 1

r2(D−2)
. (81)

It is seen that r = E2 is a regular event horizon, while r = 0 is an essential
singularity. Therefore conformal solutions describe a black hole. Mass of the
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black hole can be defined in terms of integration constants:

2Mc = (E2)
D−3 +

(

1−
2β

(D − 2)

)

(E1)
D−3. (82)

β turns out to be proportional to the scalar charge.

4 Conclusion

In this paper we have studied axi-dilaton gravity theories in D ≥ 4 dimen-
sional space-times. We have shown by making use of the conformal rescaling
properties of the space-time geometry, the equivalence of the variational field
equations obtained in the Brans-Dicke, Einstein and string frames, with or
without torsion.

We have investigated a class of asymptotically flat, static, spherically
symmetric solutions in the Brans-Dicke frame. The black hole configurations
found in the case of non-scale invariant axi-dilaton gravity generalize the well-
known D = 4 Janis-Newman-Winicour solutions of the Einstein-Maxwell-
massless scalar field equations [14]. The fact that we are working in the
Brans-Dicke frame is essential to our discussion of the solutions of the scale
invariant axi-dilaton gravity in D-dimensions. The solutions found in this
case generalize the conformal black hole solutions of Bekenstein of D = 4
Einstein-conformal scalar field theory.
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