13 research outputs found

    Understanding genetic diversity of relict forests. Linking long-term isolation legacies and current habitat fragmentation in Abies pinsapo Boiss

    Get PDF
    Increasing variability and uncertainty regarding future climate provide new challenges for the conservation of endangered tree species. For example, threat status can be impacted by genetic diversity, where forest trees show reduced geographic range size, isolated populations and fragmented distribution. We place the conservation insights of population genetic structure in a climate change context, using as experimental system a relict drought-sensitive fir (Abies pinsapo Boiss.). Nuclear (nSSR, ISSR) and chloroplast (cpSSR) markers were analysed to investigate the extent to that A. pinsapo evidences ongoing genetic erosion, isolation and divergent genetic diversity, among populations, elevations and cohorts (young, adult and old trees). We obtained contrasting patterns among chloroplast and nuclear markers. Based on cpSSRs, the highest genetic distances were found in the western portion of the distribution, while based on both nSSRs and ISSRs, differentiation appeared in the eastern portion of the distribution. Evidence for bottlenecks and genetic drift were found in all the studied populations, as well as low among-population genetic differentiation. Land use legacies e.g. impacting current forest structural diversity might be related to observed genetic diversity. No evidence of demographic genetic erosion among cohorts was found. Conservation efforts should focus on reducing the probability of occurrence of stochastic events such as fires and habitat loss due to human impacts or climate change to maximise A. pinsapo population sizes. Further research on adaptive potential should focus on identifying active genetic management strategies that might improve adaptation to future climates in such endangered relict species

    Gene Frequency Shift in Relict Abies pinsapo Forests Associated with Drought-Induced Mortality: Preliminary Evidence of Local-Scale Divergent Selection

    Get PDF
    Current climate change constitutes a challenge for the survival of several drought-sensitive forests. The study of the genetic basis of adaptation offers a suitable way to understand how tree species may respond to future climatic conditions, as well as to design suitable conservation and management strategies. Here, we focus on selected genetic signatures of the drought-sensitive relict fir, Abies pinsapo Boiss. Field sampling of 156 individuals was performed in two elevation ecotones, characterized by widespread A. pinsapo decline and mortality. The DNA from dead trees was investigated and compared to living individuals, accounting for different ages and elevations. We studied the genes gated outwardly-rectifying K+ (GORK) channel and Plasma membrane Intrinsic Protein (PIP1) aquaporin, previously related to drought response in plant model species, to test whether drought was the main abiotic factor driving the decline of A. pinsapo forests. A combination of linear regression and factor models were used to test these selection signatures, as well as a fixation index (Fst), used here to analyze the genetic structure. The results were consistent among these approaches, supporting a statistically significant association of the GORK gene with survival in one of the A. pinsapo populations. These results provide preliminary evidence for the potential role of the GORK gene in the resilience to drought of A. pinsapo

    De novo transcriptome sequencing and gene co-expression reveal a genomic basis for drought sensitivity and evidence of a rapid local adaptation on Atlas cedar (Cedrus atlantica)

    Get PDF
    IntroductionUnderstanding the adaptive capacity to current climate change of drought-sensitive tree species is mandatory, given their limited prospect of migration and adaptation as long-lived, sessile organisms. Knowledge about the molecular and eco-physiological mechanisms that control drought resilience is thus key, since water shortage appears as one of the main abiotic factors threatening forests ecosystems. However, our current background is scarce, especially in conifers, due to their huge and complex genomes.MethodsHere we investigated the eco-physiological and transcriptomic basis of drought response of the climate change-threatened conifer Cedrus atlantica. We studied C. atlantica seedlings from two locations with contrasting drought conditions to investigate a local adaptation. Seedlings were subjected to experimental drought conditions, and were monitored at immediate (24 hours) and extended (20 days) times. In addition, post-drought recovery was investigated, depicting two contrasting responses in both locations (drought resilient and non-resilient). Single nucleotide polymorphisms (SNPs) were also studied to characterize the genomic basis of drought resilience and investigate a rapid local adaptation of C. atlantica.ResultsDe novo transcriptome assembly was performed for the first time in this species, providing differences in gene expression between the immediate and extended treatments, as well as among the post-drought recovery phenotypes. Weighted gene co-expression network analysis showed a regulation of stomatal closing and photosynthetic activity during the immediate drought, consistent with an isohydric dynamic. During the extended drought, growth and flavonoid biosynthesis inhibition mechanisms prevailed, probably to increase root-to-shoot ratio and to limit the energy-intensive biosynthesis of secondary metabolites. Drought sensitive individuals failed in metabolism and photosynthesis regulation under drought stress, and in limiting secondary metabolite production. Moreover, genomic differences (SNPs) were found between drought resilient and sensitive seedlings, and between the two studied locations, which were mostly related to transposable elements.DiscussionThis work provides novel insights into the transcriptomic basis of drought response of C. atlantica, a set of candidate genes mechanistically involved in its drought sensitivity and evidence of a rapid local adaptation. Our results may help guide conservation programs for this threatened conifer, contribute to advance drought-resilience research and shed light on trees’ adaptive potential to current climate change

    Laboratorio en abierto: aPrendiendo a CopiaR el ADN

    Get PDF
    El objetivo principal del proyecto es la puesta a punto de recursos educativos en abierto (REA) dirigidos a los alumnos de secundaria. El punto de partida será plantear diferentes retos y situaciones que se pueden resolver utilizando distintos recursos científicos, para decidir qué recurso es el más adecuado y cómo se aplica. En esta propuesta la resolución de los problemas planteados estaría basada en la aplicación de una herramienta que ha revolucionado la genética y biología, la reacción en Cadena de la Polimerasa, conocida como PCR

    Laboratorio en abierto: aprendendiendo a copiar ADN.2

    Get PDF
    El objetivo principal del proyecto es la puesta a punto de recursos educativos en abierto (REA) dirigidos a los alumnos de secundaria. La propuesta pretende desarrollar habilidades, para la resolución de problemas científicos, a través de retos que despierten el interés y la imaginación de los alumnos de secundaria. En esta propuesta la resolución de los problemas planteados estaría basada en la aplicación de una herramienta que ha revolucionado la genética y biología, la reacción en Cadena de la Polimerasa, conocida como PCR

    Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions

    Get PDF
    Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics

    Challenges and Perspectives in the Epigenetics of Climate Change-Induced Forests Decline

    Get PDF
    Forest tree species are highly vulnerable to the effects of climate change. As sessile organisms with long generation times, their adaptation to a local changing environment may rely on epigenetic modifications when allele frequencies are not able to shift fast enough. However, the current lack of knowledge on this field is remarkable, due to many challenges that researchers face when studying this issue. Huge genome sizes, absence of reference genomes and annotation, and having to analyze huge amounts of data are among these difficulties, which limit the current ability to understand how climate change drives tree species epigenetic modifications. In spite of this challenging framework, some insights on the relationships among climate change-induced stress and epigenomics are coming. Advances in DNA sequencing technologies and an increasing number of studies dealing with this topic must boost our knowledge on tree adaptive capacity to changing environmental conditions. Here, we discuss challenges and perspectives in the epigenetics of climate change-induced forests decline, aiming to provide a general overview of the state of the art
    corecore