782 research outputs found

    Primary squamous cell carcinoma of the ovary. Review of the literature

    Get PDF
    Pure primary ovarian squamous cell carcinoma (oSCC) is very rare, with about 42 cases have been reported in the literature. Lacking effective treatment guidelines, the prognosis of oSCC is extremely poor. Here, we report a 52-year-old postmenopausal woman diagnosed with pure primary oSCC in our center. The patient received debulking surgery followed by chemotherapy with carboplatin, paclitaxel, and bevacizumab. The patient survived 11 months after surgery and died of tumor progression and multiple organ failure. We also present a review of the literature

    The research progress on synchronous endometrial and ovarian carcinoma

    Get PDF
    Synchronous endometrial and ovarian carcinoma (SEOC) is the most common combination of primary double cancer in the female reproductive system. The etiology and pathogenesis of SEOC remain unclear, and clinically, it is often misdiagnosed as metastatic cancer, affecting the formulation of treatment plans and prognosis for patients. This article provides a review of its epidemiology, pathological and clinical characteristics, risk factors, pathogenesis, diagnosis, treatment, and prognosis

    The progress and prospect of sentinel lymph node mapping in endometrial carcinoma

    Get PDF
    Sentinel lymph node (SLN) refers to the initial site of the lymphatic drainage from a primary tumor area. Identifying the SLN and analyzing tumor involvement can predict the status of the remaining lymph nodes. Accordingly, sentinel lymph node mapping (SLN mapping) has been brought up and widely applied to cancer therapy for its illuminating role in clinical lymph node resection. Sufficient information to guide surgical pathological staging and adjuvant treatment in endometrial cancer can be rendered by SLN mapping, hence minimizing surgery injury and reducing the incidence of complications. Evidence suggests that using SLN mapping does not affect progression-free survival (PFS) and overall survival (OS) of endometrial cancer patients. Furthermore, there is increasing evidence that using SLN mapping has a high detection rate (DR), sensitivity, and negative predictive value (NPV) for patients with early-stage lower-risk endometrial cancer. This review aims to systematically summarize the advances and application prospects of SLN mapping in endometrial cancer, with an expectation of furnishing reference for the clinical application

    Inhibition of transforming growth factor-β restores endothelial thromboresistance in vein grafts

    Get PDF
    BackgroundThrombosis is a major cause of the early failure of vein grafts (VGs) implanted during peripheral and coronary arterial bypass surgeries. Endothelial expression of thrombomodulin (TM), a key constituent of the protein C anticoagulant pathway, is markedly suppressed in VGs after implantation and contributes to local thrombus formation. While stretch-induced paracrine release of transforming growth factor-β (TGF-β) is known to negatively regulate TM expression in heart tissue, its role in regulating TM expression in VGs remains unknown.MethodsChanges in relative mRNA expression of major TGF-β isoforms were measured by quantitative polymerase chain reaction (qPCR) in cultured human saphenous vein smooth muscle cells (HSVSMCs) subjected to cyclic stretch. To determine the effects of paracrine release of TGF-β on endothelial TM mRNA expression, human saphenous vein endothelial cells (HSVECs) were co-cultured with stretched HSVSMCs in the presence of 1D11, a pan-neutralizing TGF-β antibody, or 13C4, an isotype-control antibody. Groups of rabbits were then administered 1D11 or 13C4 and underwent interpositional grafting of jugular vein segments into the carotid circulation. The effect of TGF-β inhibition on TM gene expression was measured by qPCR; protein C activating capacity and local thrombus formation were measured by in situ chromogenic substrate assays; and VG remodeling was assessed by digital morphometry.ResultsCyclic stretch induced TGF-β1 expression in HSVSMCs by 1.9 ± 0.2-fold (P < .001) without significant change in the expressions of TGF-β2 and TGF-β3. Paracrine release of TGF-β1 by stretched HSVSMCs inhibited TM expression in stationary HSVECs placed in co-culture by 57 ± 12% (P = .03), an effect that was abolished in the presence of 1D11. Similarly, TGF-β1 was the predominant isoform induced in rabbit VGs 7 days after implantation (3.5 ± 0.4-fold induction; P < .001). TGF-β1 protein expression localized predominantly to the developing neointima and coincided with marked suppression of endothelial TM expression (16% ± 2% of vein controls; P < .03), a reduction in situ activated protein C (APC)-generating capacity (53% ± 9% of vein controls; P = .001) and increased local thrombus formation (3.7 ± 0.8-fold increase over vein controls; P < .01). External stenting of VGs to limit vessel distension significantly reduced TGF-β1 induction and TM downregulation. Systemic administration of 1D11 also effectively prevented TM downregulation, preserved APC-generating capacity, and reduced local thrombus in rabbit VGs without observable effect on neointima formation and other morphometric parameters 6 weeks after implantation.ConclusionTM downregulation in VGs is mediated by paracrine release of TGF-β1 caused by pressure-induced vessel stretch. Systemic administration of an anti-TGF-β antibody effectively prevented TM downregulation and preserved local thromboresistance without negative effect on VG remodeling.Clinical RelevanceVein grafts (VGs) are commonly used conduits for coronary and peripheral arterial bypass surgeries. Thrombosis is a major cause of early VG failure. Trombomodulin (TM), a key component of the anticoagulant protein C pathway, is downregulated early after VG implantation and facilitates local thrombus formation. We found that paracrine release of transforming growth factor-β1 (TGF-β1), caused by pressure-induced stretch, was a potent negative regulator of TM in rabbit VGs. Administration of a neutralizing anti-TGF-β antibody effectively prevented TM downregulation and reduced local thrombus generation without adversely affecting long-term VG remodeling. This may represent a novel strategy to improve patency in patients undergoing arterial bypass procedures

    Simulation of InP-based monolithically integrated PIN-HEMT front-end optical receiver

    Get PDF
    Model is developed for the dc I-V characteristics and microwave small-signal parameters of the InP-based In(0.52)Al(0.28)As/In(0.65)Ga(0.35)As HEMT's based on physical principles, and the effect of the extrinsic source and drain resistances has also been included. Using the parameters obtained by this model and the small-signal model of PIN detector, we simulated the transimpedance configurations with an inverter and a cascode input circuit of monolithically integrated PIN-HEMT front-end optical receiver. The results indicate that the cascode input stage can realize a smaller input capacitance than the inverter-type, so it has a wider bandwidth. In order to operate in 2.5Gb/s transmission system, the cascode input stage is applied and the parameters are optimized. The simulations reveal that the transimpedance gain is larger than 63.2dB Omega and the sensitivity is 30dBm when the bit rate is 2.5Gb/s. The results obtained in this paper provide a guideline for the fabrication of PIN-HEMT optical receiver

    In Vitro Amplification of Misfolded Prion Protein Using Lysate of Cultured Cells

    Get PDF
    Protein misfolding cyclic amplification (PMCA) recapitulates the prion protein (PrP) conversion process under cell-free conditions. PMCA was initially established with brain material and then with further simplified constituents such as partially purified and recombinant PrP. However, availability of brain material from some species or brain material from animals with certain mutations or polymorphisms within the PrP gene is often limited. Moreover, preparation of native PrP from mammalian cells and tissues, as well as recombinant PrP from bacterial cells, involves time-consuming purification steps. To establish a convenient and versatile PMCA procedure unrestricted to the availability of substrate sources, we attempted to conduct PMCA with the lysate of cells that express cellular PrP (PrPC). PrPSc was efficiently amplified with lysate of rabbit kidney epithelial RK13 cells stably transfected with the mouse or Syrian hamster PrP gene. Furthermore, PMCA was also successful with lysate of other established cell lines of neuronal or non-neuronal origins. Together with the data showing that the abundance of PrPC in cell lysate was a critical factor to drive efficient PrPSc amplification, our results demonstrate that cell lysate in which PrPC is present abundantly serves as an excellent substrate source for PMCA

    Impact of short-term dietary modification on postprandial oxidative stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have recently reported that short-term (21-day) dietary modification in accordance with a stringent vegan diet (i.e., a Daniel Fast) lowers blood lipids as well as biomarkers of oxidative stress. However, this work only involved measurements obtained in a fasted state. In the present study, we determined the postprandial response to a high-fat milkshake with regards to blood triglycerides (TAG), biomarkers of oxidative stress, and hemodynamic variables before and following a 21-day Daniel Fast.</p> <p>Methods</p> <p>Twenty-two subjects (10 men and 12 women; aged 35 ± 3 years) completed a 21-day Daniel Fast. To induce oxidative stress, a milkshake (fat = 0.8 g·kg<sup>-1</sup>; carbohydrate = 1.0 g·kg<sup>-1</sup>; protein = 0.25 g·kg<sup>-1</sup>) was consumed by subjects on day one and day 22 in a rested and 12-hour fasted state. Before and at 2 and 4 h after consumption of the milkshake, heart rate (HR) and blood pressure were measured. Blood samples were also collected at these times and analyzed for TAG, malondialdehyde (MDA), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), advanced oxidation protein products (AOPP), nitrate/nitrite (NOx), and Trolox Equivalent Antioxidant Capacity (TEAC).</p> <p>Results</p> <p>A time effect was noted for HR (<it>p </it>= 0.006), with values higher at 2 hr post intake of the milkshake as compared to pre intake (<it>p </it>< 0.05). Diastolic blood pressure was lower post fast as compared to pre fast (<it>p </it>= 0.02), and a trend for lower systolic blood pressure was noted (<it>p </it>= 0.07). Time effects were noted for TAG (<it>p </it>= 0.001), MDA (<it>p </it>< 0.0001), H<sub>2</sub>O<sub>2 </sub>(<it>p </it>< 0.0001), AOPP (<it>p </it>< 0.0001), and TEAC (<it>p </it>< 0.0001); all concentrations were higher at 2 h and 4 h post intake compared to pre intake, except for TEAC, which was lower at these times (<it>p </it>< 0.05). A condition effect was noted for NOx (<it>p </it>= 0.02), which was higher post fast as compared to pre fast. No pre/post fast × time interactions were noted (<it>p </it>> 0.05), with the area under the curve from pre to post fast reduced only slightly for TAG (11%), MDA (11%), H<sub>2</sub>O<sub>2 </sub>(8%), and AOPP (12%), with a 37% increase noted for NOx.</p> <p>Conclusion</p> <p>Partaking in a 21-day Daniel Fast does not result in a statistically significant reduction in postprandial oxidative stress. It is possible that a longer time course of adherence to the Daniel Fast eating plan may be needed to observe significant findings.</p

    Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV

    Get PDF
    The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
    corecore