1,210 research outputs found

    Superfluidity versus localization in bulk 4He at zero temperature

    Full text link
    We present a zero-temperature quantum Monte Carlo calculation of liquid 4^4He immersed in an array of confining potentials. These external potentials are centered in the lattice sites of a fcc solid geometry and, by modifying their well depth and range, the system evolves from a liquid phase towards a progressively localized system which mimics a solid phase. The superfluid density decreases with increasing order, reaching a value ρs/ρ=0.079(16) \rho_{\rm s}/\rho = 0.079(16) when the Lindemann's ratio of the model equals the experimental value for solid 4^4He.Comment: 5 pages,5 figure

    Supersolidity in quantum films adsorbed on graphene and graphite

    Get PDF
    Using quantum Monte Carlo we have studied the superfluid density of the first layer of 4^4He and H2_2 adsorbed on graphene and graphite. Our main focus has been on the equilibrium ground state of the system, which corresponds to a registered 3×3\sqrt3 \times \sqrt3 phase. The perfect solid phase of H2_2 shows no superfluid signal whereas 4^4He has a finite but small superfluid fraction (0.67%). The introduction of vacancies in the crystal makes the superfluidity increase, showing values as large as 14% in 4^4He without destroying the spatial solid order.Comment: 5 pages, accepted for publication in PR

    Genomic analysis of eight native plasmids of the phytopathogen Pseudomonas syringae

    Get PDF
    Comunicación a conferenciaThe pPT23A family of plasmids (PFPs) appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. PFPs are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. Further understanding of the evolution of the pPT23A plasmid family and the role of these plasmids in P. syringae biology and pathogenesis, requires the determination and analysis of additional complete, closed plasmid genome sequences. Therefore, our main objective was to obtain complete genome sequences from PFPs from three different P. syringae pathovars and perform a comparative genomic analysis. In this work plasmid DNA isolation, purification by CsCl-EtBr gradients, and sequencing using 454 platform, were used to obtain the complete sequence of P. syringae plasmids. Different bioinformatic tools were used to analyze the plasmid synteny, to identify virulence genes (i.e. type 3 effectors) and to unravel the evolutionary history of PFPs. Our sequence analysis revealed that PFPs from P. syringae encode suites of accessory genes that are selected at different levels (universal, interpathovar and intrapathovar). The conservation of type IVSS encoding conjugation functions also contributes to the distribution of these plasmids within P. syringae populations. Thus, this study contributes to unravel the genetic basis of the role of PFPs in different P. syringae lifestyles.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Isolation, characterization and selection of bacterial isolates from a suppressive soil with beneficial traits to plants

    Get PDF
    Backgrounds This study focused on the characterization and selection of bacterial strains obtained from a suppressive soil displaying antifungal activity against the soilborne phytopathogenic fungi Rosellinia necatrix. Bacterial profile from this suppressive soil were first obtained by 16S rRNA gene sequencing, revealing a significant increase in the bacterial class Gammaproteobacteria, especially in some antagonistic representatives of Pseudomonas spp. Objectives To obtain and characterize a collection of 246 bacterial isolates obtained from this suppressive soil, in order to identify new strains with antifungal activity against fungal phytopathogens. Methods To obtain the bacterial collection, we performed an isolation on a selective medium for Pseudomonas-like microorganisms. Further characterization tests were used in order to analyse the bacterial collection, including identification of the general metabolic profile of glucose, the profiling of antifungals produced, including both the putative production of antifungal compounds and lytic exoenzymes, and the evaluation of traits related with beneficial effects on plants. Conclusions A final selection of representative strains resulted in antifungal isolates belonging to the genus Pseudomonas, but also some representatives of the genera Serratia and Stenotrophomonas. These selected strains were tested for plant protection by an in vivo experiment using avocado and wheat plants challenged by the pathogen R. necatrix, showing all of them an antifungal ability and plant disease protection. Pseudomonas-like strains isolated from suppressive soils constitute an excellent source for novel microbial biocontrol agents against soilborne fungal pathogens. This work was supported by grant AGL2014-52518-C2-1-R. Carmen Vida and Sandra Tienda are supported by a PhD fellowship from the FPI program of the Spanish Government.This work was supported by grant AGL2014-52518-C2-1-R. Carmen Vida and Sandra Tienda are supported by a PhD fellowship from the FPI program of the Spanish Government; Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    J002 The cAMP binding protein Epac regulates cardiac myofilament function

    Get PDF
    In the heart, cAMP is a key regulator of excitation—contraction coupling and its biological effects are mainly associated with the activity of protein kinase A (PKA). The aim of this study was to investigate the contribution of the cAMP-binding protein Epac (Exchange protein directly activated by cAMP) in the regulation of the contractile properties of rat ventricular cardiac myocytes. We report that both PKA and Epac increased cardiac sarcomere contraction but through opposite mechanisms. Differently from PKA, selective Epac activation by the cAMP analog 8-pCPT reduced Ca2+ transient amplitude and increased cell shortening in intact cardiomyocytes as well as myofilament Ca2+ sensitivity in permeabilized cardiomyocytes. Moreover, ventricular myocytes, which were infected in vivo with a constitutively active form of Epac, showed enhanced myofilament Ca2+ sensitivity compared to control cells infected with GFP alone. At the molecular level, Epac increased phosphorylation of two key sarcomeric proteins, cardiac Troponin I (cTnI) and cardiac Myosin Binding Protein-C (cMyBP-C). The effects of Epac activation on myofilament Ca2+ sensitivity and on cTnI and cMyBP-C phosphorylation were independent of PKA, and were blocked by protein kinase C (PKC) and Ca2+ calmodulin kinase II (CaMKII) inhibitors. Altogether these findings identify Epac as a new regulator of myofilament function

    Comparative genomic analysis of native pseudomonas syringae plasmids belonging to the ppt23 a family reveals their role in p. Syringae epiphytic and pathogenic lifestyles

    Get PDF
    Backgrounds The pPT23A family of plasmids (PFPs) appears to be indigenous to the plant pathogen Pseudomonas syringae and these plasmids are widely distributed and widely transferred among pathovars of P. syringae and related species. PFPs are sources of accessory genes for their hosts that can include genes important for virulence and epiphytic colonization of plant leaf surfaces. Objectives Further understanding of the evolution of the pPT23A plasmid family and the role of these plasmids in P. syringae biology and pathogenesis, requires the determination and analysis of additional complete, closed plasmid genome sequences. Therefore, our main objective was to obtain complete genome sequences of PFPs from three different P. syringae pathovars and perform a comprehensive comparative genomic analysis. Methods In this work plasmid DNA isolation, purification by CsCl-EtBr gradients, and sequencing using 454 platform, were carried out to obtain the complete sequence of P. syringae plasmids. Different bioinformatic tools were used to analyze the plasmid synteny, to identify virulence genes (i.e. type 3 effectors) and to unravel the evolutionary history of PFPs. Conclusions Our sequence analysis revealed that PFPs from P. syringae encode suites of accessory genes that are selected at different levels (universal, interpathovar and intrapathovar). The conservation of type IVSS encoding conjugation functions also contributes to the distribution of these plasmids within P. syringae populations. Thus, this study contributes to unravel the genetic bases of the role of PFPs in different P. syringae lifestyles. This work was supported by grants Proyecto de Excelencia, Junta de Andalucía (P07-AGR-02471; P12-AGR-1473) and by Michigan State University AgBioResearch.This work was supported by grants Proyecto de Excelencia, Junta de Andalucía (P07-AGR-02471; P12-AGR-1473) and by Michigan State University AgBioResearch; Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Quantum Monte Carlo simulation of overpressurized liquid 4He

    Full text link
    A diffusion Monte Carlo simulation of superfluid 4^4He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing (\sim 25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.Comment: 5 pages, accepted for publication in Phys. Rev. Let

    Tracking advanced persistent threats in critical infrastructures through opinion dynamics

    Get PDF
    Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Effect of organic loading rate on the production of Polyhydroxyalkanoates from sewage sludge

    Get PDF
    The aim of this work was to study the effect of organic loading rate on the production of Polyhydroxyalkanoates (PHA) from sewage sludge. Synthesis of PHA using sewage sludge as platform was achieved in this work. Three pilot-scale selection-sequencing batch reactors (S-SBR) were used for obtaining a culture able to accumulate PHA following a strategy of aerobic dynamic feeding (ADF) at different volumetric organic-loading-rate (vOLR): 1.3, 1.8 and 0.8 g COD L-1 d-1 for S-SBR 1, S-SBR 2 and S-SBR 3, respectively. Decreasing the vOLR enhanced the general performance of the process as for organic matter removal (from 99.2% ± 0.3% in S-SBR-3 to 92 ± 2 in S-SBR-2) while the opposite trend was recorded for PHA production (6.0 PHA % w/w in S-SBR-3 vs 13.7 PHA % w/w in S-SBR-2 at the end of the feast phase). Furthermore, indirect and direct emissions, as N2O, were evaluated during the process for the first time. Finally, three accumulation tests were performed achieving 24% w/w
    corecore