78 research outputs found

    Flight test of a decoupler pylon for wing/store flutter suppression

    Get PDF
    The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. Flight tests were performed on an F-16 aircraft carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with the GBU-8 mounted on the decoupler pylon. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37-percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal. Experience with the present decoupler pylon design indicated that friction in the pivoting mechanism could affect its proper functioning as a flutter suppressor

    Flight test of passive wing/store flutter suppression

    Get PDF
    Flight tests were performed on an F-16 airplane carrying on each wing an AIM-9J wingtip missile, a GBU-8 bomb near midspan, and an external fuel tank. Baseline flights with the GBU-8 mounted on a standard pylon established that this configuration is characterized by an antisymmetric limited amplitude flutter oscillation within the operational envelope. The airplane was then flown with GBU-8 mounted on the decoupler pylon. The decoupler pylon is a NASA concept of passive wing-store flutter suppression achieved by providing a low store-pylon pitch frequency. The decoupler pylon successfully suppressed wing-store flutter throughout the flight envelope. A 37 percent increase in flutter velocity over the standard pylon was demonstrated. Maneuvers with load factors to 4g were performed. Although the static store displacements during maneuvers were not sufficiently large to be of concern, a store pitch alignment system was tested and performed successfully. One GBU-8 was ejected demonstrating that weapon separation from the decoupler pylon is normal

    Space Transportation Materials and Structures Technology Workshop. Volume 1: Executive summary

    Get PDF
    The workshop was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems; Propulsion Systems; and Entry Systems. The goals accomplished were (1) to develop important strategic planning information necessary to transition materials and structures technologies from lab research programs into robust and affordable operational systems; (2) to provide a forum for the exchange of information and ideas between technology developers and users; and (3) to provide senior NASA management with a review of current space transportation programs, related subjects, and specific technology needs. The workshop thus provided a foundation on which a NASA and industry effort to address space transportation materials and structures technologies can grow

    Static and unsteady pressure measurements on a 50 degree clipped delta wing at M = 0.9

    Get PDF
    Pressures were measured with Freon as the test medium. Data taken at M = 0.9 is presented for static and oscillatory deflections of the trailing edge control surface and for the wing in pitch. Comparisons of the static measured data are made with results computed using the Bailey-Ballhaus small disturbance code

    Aircraft aeroelasticity and structural dynamics research at the NASA Langley Research Center: Some illustrative results

    Get PDF
    Highlights of nine different research studies are described. Five of these topics relate directly to fixed-wing aircraft and range from flutter studies using relatively simple and inexpensive wind-tunnel models to buffet studies of the vertical tails of an advanced high performance configuration. The other four topics relate directly to rotary-wing aircraft and range from studies of the performance and vibration characteristics of an advanced rotor design to optimization of airframe structures for vibration attenuation

    Steady and unsteady transonic pressure measurements on a clipped delta wing for pitching and control-surface oscillations

    Get PDF
    Steady and unsteady pressures were measured on a clipped delta wing with a 6-percent circular-arc airfoil section and a leading-edge sweep angle of 50.40 deg. The model was oscillated in pitch and had an oscillating trailing-edge control surface. Measurements were concentrated over a Mach number range from 0.88 to 0.94; less extensive measurements were made at Mach numbers of 0.40, 0.96, and 1.12. The Reynolds number based on mean chord was approximately 10 x 10 to the 6th power. The interaction of wing or control-surface deflection with the formation of shock waves and with a leading-edge vortex generated complex pressure distributions that were sensitive to frequency and to small changes in Mach number at transonic speeds

    Passive control of wing/store flutter

    Get PDF
    Results are presented for a passive flutter suppression approach known as the decoupler pylon. The decoupler pylon dynamically isolates the wing from store pitch inertia effects by means of soft spring/damper elements assisted by a low frequency feedback control system which minimizes static pitch deflections of the store because of maneuvers and changing flight conditions. Wind tunnel tests and analyses show that this relatively simple pylon suspension system provides substantial increases in flutter speed and reduces the sensitivity of flutter to changes in store inertia and center of gravity. Flutter characteristics of F-16 and YF-17 flutter models equipped with decoupler pylon mounted stores are presented and compared with results obtained on the same model configuration with active flutter suppression systems. These studies show both passive and active concepts to be effective in suppressing wing/store flutter. Also presented are data showing the influence of pylon stiffness nonlinearities on wing/store flutter

    Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Get PDF
    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form

    Structural dynamic and aeroelastic considerations for hypersonic vehicles

    Get PDF
    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out

    Ground vibration test of an F-16 airplane with modified decoupler pylons

    Get PDF
    The decoupler pylon is a passive wing/store flutter suppression device. It was modified to reduce friction following initial flight tests. A ground vibration test was conducted on an F-16 aircraft loaded on each wing with a one-half-full (center bay empty) 370-gallon fuel tank mounted on a standard pylon, a GBU-8 store mounted on the decoupler pylon, and an AIM-9J missile mounted on a wingtip launcher. The test was conducted prior to flight tests with the modified pylon to determine modal frequencies, mode shapes, and structural damping coefficients. Data presented include frequency response plots, mode shape plots, and limited force-effect plots
    corecore