43 research outputs found

    The Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS) Is a Reliable and Valid Tool for Evaluating Motor Imagery in Stroke Populations

    Get PDF
    Mental imagery can improve motor performance in stroke populations when combined with physical therapy. Valid and reliable instruments to evaluate the imagery ability of stroke survivors are needed to maximize the benefits of mental imagery therapy. The purposes of this study were to: examine and compare the test-retest intra-rate reliability of the Movement Imagery Questionnaire-Revised, Second Edition (MIQ-RS) in stroke survivors and able-bodied controls, examine internal consistency of the visual and kinesthetic items of the MIQ-RS, determine if the MIQ-RS includes both the visual and kinesthetic dimensions of mental imagery, correlate impairment and motor imagery scores, and investigate the criterion validity of the MIQ-RS in stroke survivors by comparing the results to the KVIQ-10. Test-retest analysis indicated good levels of reliability (ICC range: .83–.99) and internal consistency (Cronbach α: .95–.98) of the visual and kinesthetic subscales in both groups. The two-factor structure of the MIQ-RS was supported by factor analysis, with the visual and kinesthetic components accounting for 88.6% and 83.4% of the total variance in the able-bodied and stroke groups, respectively. The MIQ-RS is a valid and reliable instrument in the stroke population examined and able-bodied populations and therefore useful as an outcome measure for motor imagery ability

    SABRE: A bio-inspired fault-tolerant electronic architecture

    Get PDF
    As electronic devices become increasingly complex, ensuring their reliable, fault-free operation is becoming correspondingly more challenging. It can be observed that, in spite of their complexity, biological systems are highly reliable and fault tolerant. Hence, we are motivated to take inspiration for biological systems in the design of electronic ones. In SABRE (self-healing cellular architectures for biologically inspired highly reliable electronic systems), we have designed a bio-inspired fault-tolerant hierarchical architecture for this purpose. As in biology, the foundation for the whole system is cellular in nature, with each cell able to detect faults in its operation and trigger intra-cellular or extra-cellular repair as required. At the next level in the hierarchy, arrays of cells are configured and controlled as function units in a transport triggered architecture (TTA), which is able to perform partial-dynamic reconfiguration to rectify problems that cannot be solved at the cellular level. Each TTA is, in turn, part of a larger multi-processor system which employs coarser grain reconfiguration to tolerate faults that cause a processor to fail. In this paper, we describe the details of operation of each layer of the SABRE hierarchy, and how these layers interact to provide a high systemic level of fault tolerance. © 2013 IOP Publishing Ltd

    Low-Cost and Highly Reliable Detector for Transient and Crosstalk Faults Affecting FPGA Interconnects*

    No full text
    In this paper we present a novel circuit for the on-line detection of transient and crosstalk faults affecting the interconnects of systems implemented using Field Programmable Gate-Arrays (FPGAs). The proposed detector features self-checking ability with respect to faults possibly affecting itself, thus being suitable for systems with high reliability requirements, like those for space applications. Compared to alternate solutions, the proposed circuit requires a significantly lower area overhead, while implying a comparable, or lower, impact on system performance. We have verified our circuit operation and self-checking ability by means of post-layout simulations

    Pseudo-Philon. Les Antiquités Bibliques,

    No full text
    t. 1 Introduction et texte critiques par D.J. Harrington, Traduction par J. Cazeaux revue par Ch. Perrot et P.-M. Bogaert (SC 229), t. 2 Introduction littéraire, commentaire et index par Ch. Perrot et P.-M. Bogaert avec la collaboration de D.J. Harrington

    A novel dual-walled CNT bus architecture with reduced cross-coupling features

    No full text
    Carbon Nano Tubes (CNTs) have been widely proposed as interconnect fabric for nano and very deep submicron (silicon-based) technologies due to their robustness to electromigration. In this paper, a novel bus architecture with low crosstalk features is proposed. It is made of dual-walled nanotubes (DWNTs) arranged in parallel. It achieves reductions up to 72% of the crosstalk-induced delay, and up to 76% for the crosstalk-induced peak voltage, at a modest area increase. Therefore, the proposed bus arrangement significantly improves performance and provides reliable operation in an interconnect. © 2006 IEEE

    Low-cost and highly reliable detector for transient and crosstalk faults affecting FPGA interconnects

    No full text
    In this paper we present a novel circuit for the on-line detection of transient and crosstalk faults affecting the interconnects of systems implemented using Field Programmable Gate-Arrays (FPGAs). The proposed detector features self-checking ability with respect to faults possibly affecting itself, thus being suitable for systems with high reliability requirements, like those for space applications. Compared to alternate solutions, the proposed circuit requires a significantly lower area overhead, while implying a comparable, or lower, impact on system performance. We have verified our circuit operation and self-checking ability by means of post-layout simulations

    On transistor level gate sizing for increased robustness to transient faults

    No full text
    In this paper we present a detailed analysis on how the critical charge (Q crit) of a circuit node, usually employed to evaluate the probability of transient fault (TF) occurrence as a consequence of a particle hit, depends on transistors' sizing. We derive an analytical model allowing us to calculate a node's Q crit given the size of the node's driving gate and fan-out gate(s), thus avoiding time costly electrical level simulations. We verified that such a model features an accuracy of the 97% with respect to electrical level simulations performed by HSPICE. Our proposed model shows that Q crit depends much more on the strength (conductance) of the gate driving the node, than on the node total capacitance. We also evaluated the impact of increasing the conductance of the driving gate on TFs' propagation, hence on Soft Error Susceptibility (SES). We found that such a conductance increase not only improves the TF robustness of the hardened node, but also that of the whole circuit. © 2005 IEEE

    The other side of the timing equation: A result of clock faults

    No full text
    We analyze the impact of clock faults on product quality and operation in the field. We show that clock faults could: i) give rise to min delay violations; ii) compromise the effectiveness of delay fault testing in screening out possible delay faults; iii) be missed by current functional testing (in addition to possibly be missed by structural testing, as proven in [15]). Therefore, new testing/DFT approaches are needed to avoid the dramatic impact of clock faults on product quality and operation in the field. Various possible approaches are discussed. © 2005 IEEE
    corecore