206 research outputs found

    Effect of Vitamins C and E on Endothelial Function in Type 1 Diabetes Mellitus

    Get PDF
    Background/Objectives. Endothelial dysfunction due to hyperglycemia-induced oxidative damage is an important predictor of future cardiovascular risk in patients with type 1 diabetes mellitus (T1DM) and is present in adolescent T1DM. We hypothesized that combined treatment with the antioxidant vitamins C and E might improve endothelial function (EF) and other biochemical risk factors in adolescents with T1DM. Subjects/Methods. Open-label antioxidant supplementation was given for six weeks with endpoint measurements collected at baseline and study completion. Endpoints measured included EF and plasma measurements of biochemical endothelial risk. Results. Two males and 7 females were studied. Mean age was 12.9 ± 0.9 yrs; mean T1DM duration was 5.5 ± 2.5 yrs; mean BMI was 22.1 ± 3.8 kg/m2; and mean hemoglobin A1c was 9.3 ± 1.1%. No differences were found for EF, high sensitivity CRP, total antioxidant capacity, adiponectin, or endothelial progenitor cells (EPCs) between before and after combined vitamin C and E therapy. Conclusions. Our negative study results do not support previous findings of decreased oxidative damage, improved endothelial function, and increased vascular repair capacity with antioxidant therapy. Longer term studies may be needed to determine the effects, if any, of combined antioxidant therapy on EPCs, EF, and markers of micro- and macrovascular complications in T1DM

    Effect of Vitamins C and E on Endothelial Function in Type 1 Diabetes Mellitus

    Get PDF
    Background/Objectives. Endothelial dysfunction due to hyperglycemia-induced oxidative damage is an important predictor of future cardiovascular risk in patients with type 1 diabetes mellitus (T1DM) and is present in adolescent T1DM. We hypothesized that combined treatment with the antioxidant vitamins C and E might improve endothelial function (EF) and other biochemical risk factors in adolescents with T1DM. Subjects/Methods. Open-label antioxidant supplementation was given for six weeks with endpoint measurements collected at baseline and study completion. Endpoints measured included EF and plasma measurements of biochemical endothelial risk. Results. Two males and 7 females were studied. Mean age was 12.9 ± 0.9 yrs; mean T1DM duration was 5.5 ± 2.5 yrs; mean BMI was 22.1 ± 3.8 kg/m2; and mean hemoglobin A1c was 9.3 ± 1.1%. No differences were found for EF, high sensitivity CRP, total antioxidant capacity, adiponectin, or endothelial progenitor cells (EPCs) between before and after combined vitamin C and E therapy. Conclusions. Our negative study results do not support previous findings of decreased oxidative damage, improved endothelial function, and increased vascular repair capacity with antioxidant therapy. Longer term studies may be needed to determine the effects, if any, of combined antioxidant therapy on EPCs, EF, and markers of micro- and macrovascular complications in T1DM

    Dynamic three-dimensional echocardiography combined with semi-automated border detection offers advantages for assessment of resynchronization therapy

    Get PDF
    Simultaneous electrical stimulation of both ventricles in patients with interventricular conduction disturbance and advanced heart failure improves hemodynamics and results in increased exercise tolerance, quality of life. We have developed a novel technique for the assessment and optimization of resynchronization therapy. Our approach is based on transthoracic dynamic three-dimensional (3D) echocardiography and allows determination of the most delayed contraction site of the left ventricle (LV) together with global LV function data. Our initial results suggest that fast reconstruction of the LV is feasible for the selection of the optimal pacing site and allows identifying LV segments with dyssynchrony

    Permanent biventricular ICD-implantation in a heart failure second re-do-CABG patient: a case report

    Get PDF
    Biventricular pacing has been suggested in end-stage heart failure. We present a 59-year-old patient undergoing second re-do CABG (coronary artery bypass graft) and carotid artery endarterectomy. Ejection fraction was 15%, QRS-width 175 ms. Following the carotid and CABG procedure, an implanted single-chamber ICD (implantable cardioverter defibrillator) was upgraded to permanent biventricular DDD pacing by implantation of one epicardial left ventricular and one epicardial atrial electrode. At follow-up two months postoperatively ejection fraction had significantly improved to 45%, the patient underwent stress test with adequate load and reported a good quality of life

    What is treatment success in cardiac resynchronization therapy?

    Get PDF
    Cardiac resynchronization therapy (CRT) is an established treatment for symptomatic patients with heart failure, a prolonged QRS duration, and impaired left ventricular (LV) function. Identification of ‘responders’ and ‘non-responders’ to CRT has attracted considerable attention. The response to CRT can be measured in terms of symptomatic response or clinical outcome, or both. Alternatively, the response to CRT can be measured in terms of changes in surrogate measures of outcome, such as LV volumes, LV ejection fraction, invasive measures of cardiac performance, peak oxygen uptake, and neurohormones. This review explores whether these measures can be used in assessing the symptomatic and prognostic response to CRT. The role of these parameters to the management of individual patients is also discussed

    Echo-driven V-V optimization determines clinical improvement in non responders to cardiac resynchronization treatment

    Get PDF
    Echocardiography plays an integral role in the detection of mechanical dyssynchrony in patients with congestive heart failure and in predicting beneficial response to cardiac resynchronization treatment. In patients who derive sup-optimal benefit from biventricular pacing, optimization of atrioventricular delay post cardiac resynchronization treatment has been shown to improve cardiac output. Some recent reports suggest that sequential ventricular pacing may further improve cardiac output. The mechanism whereby sequential ventricular pacing improves cardiac output is likely improved inter and possibly intraventricular synchrony, however these speculations have not been confirmed. In this report we describe the beneficial effect of sequential V-V pacing on inter and intraventricular synchrony, cardiac output and mitral regurgitation severity as the mechanisms whereby sequential biventricular pacing improves cardiac output and functional class in 8 patients who had derived no benefit or had deteriorated after CRT. Online tissue Doppler imaging including tissue velocity imaging, tissue synchronization imaging and strain and strain rate imaging were used in addition to conventional pulsed wave and color Doppler during sequential biventricular pacemaker programming

    Successful reduction of intraventricular asynchrony is associated with superior response to cardiac resynchronization therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac resynchronization therapy (CRT) is generally associated with a low to moderate increase of the left ventricular ejection fraction (LVEF). In some patients, however, LVEF improves remarkably and reaches near-normal values. The aim of the present study was to further characterize these so called 'super-responders' with a special focus on the extent of intra- and interventricular asynchrony before and after device implantation compared to average responders.</p> <p>Methods</p> <p>37 consecutive patients who underwent CRT device implantation according to current guidelines were included in the study. Patients were examined by echocardiography before, one day after and six months after device implantation. Pre-defined criterion for superior response to CRT was an LVEF increase > 15% after six months.</p> <p>Results</p> <p>At follow-up, eight patients (21.6%) were identified as super-responders. There were no significant differences regarding age, gender, prevalence of ischemic heart disease and LVEF between average and super-responders at baseline. After six months, LVEF had significantly increased from 26.7% ± 5.7% to 33.1% ± 7.9% (<it>p </it>< 0.001) in average and from 24.0% ± 6.7% to 50.3% ± 7.4% (<it>p </it>< 0.001) in super-responders. Both groups showed a significant reduction of QRS duration as well as LV end-diastolic and -systolic volumes under CRT. At baseline, the interventricular mechanical delay (IVMD) was 53.7 ± 20.9 ms in average and 56.9 ± 22.4 ms in super-responders - representing a similar extent of interventricular asynchrony in both groups (<it>p </it>= 0.713). CRT significantly reduced the IVMD to 20.3 ± 15.7 (<it>p </it>< 0.001) in average and to 19.8 ± 15.9 ms (<it>p </it>= 0.013) in super-responders with no difference between both groups (<it>p </it>= 0.858). As a marker for intraventricular asynchrony, we assessed the longest intraventricular delay between six basal LV segments. At baseline, there was no difference between average (86.2 ± 30.5 ms) and super-responders (78.8 ± 23.6 ms, <it>p </it>= 0.528). CRT significantly reduced the longest intraventricular delay in both groups - with a significant difference between average (66.2 ± 36.2 ms) and super-responders (32.5 ± 18.3 ms, <it>p </it>= 0.022). Multivariate logistic regression analysis identified the longest intraventricular delay one day after device implantation as an independent predictor of superior response to CRT (<it>p </it>= 0.038).</p> <p>Conclusions</p> <p>A significant reduction of the longest intraventricular delay correlates with superior response to CRT.</p

    Cardiac resynchronization therapy in heart failure patients with atrial fibrillation

    Get PDF
    Cardiac resynchronization therapy (CRT) is an important device-based, non-pharmacological approach that has shown, in large randomized trials, to improve left ventricular (LV) function and reduce both morbidity and mortality rates in selected patients affected by advanced heart failure (HF): New York Heart Association (NYHA) functional class III–IV, reduced LV systolic function with an ejection fraction (EF) ≤35%, QRS duration ≥120 ms, on optimal medical therapy, and who were in sinus rhythm. For the first time, the latest ESC and AHA/ACC/HRS Guidelines have considered atrial fibrillation (AF) patients, who constitute an important subgroup of HF patients, as eligible to receive CRT. Nevertheless, these Guidelines did not include a strategy for defining differentiated approaches according to AF duration or burden. In this review, the authors explain in which way AF may interfere with adequate CRT delivery, how to manage different AF burden, and finally present a brief overview on the effects of CRT in AF patients

    Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers

    Full text link
    [EN] Cardiac resynchronization therapy (CRT) is an effective treatment for those patients with severe heart failure. Regrettably, there are about one third of CRT "non-responders", i.e. patients who have undergone this form of device therapy but do not respond to it, which adversely affects the utility and cost-effectiveness of CRT. In this paper, we assess the ability of a novel surface ECG marker to predict CRT response. We performed a retrospective exploratory study of the ECG previous to CRT implantation in 43 consecutive patients with ischemic (17) or non-ischemic (26) cardiomyopathy. We extracted the QRST complexes (consisting of the QRS complex, the S-T segment, and the T wave) and obtained a measure of their energy by means of spectral analysis. This ECG marker showed statistically significant lower values for non-responder patients and, joint with the duration of QRS complexes (the current gold-standard to predict CRT response), the following performances: 86% accuracy, 88% sensitivity, and 80% specificity. In this manner, the proposed ECG marker may help clinicians to predict positive response to CRT in a non-invasive way, in order to minimize unsuccessful procedures.This work was supported by MINECO under grants MTM2013-43540-P and MTM2016-76647-P.Ortigosa, N.; Pérez-Roselló, V.; Donoso, V.; Osca Asensi, J.; Martínez-Dolz, L.; Fernández Rosell, C.; Galbis Verdu, A. (2018). Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers. Medical & Biological Engineering & Computing. 56(4):611-621. https://doi.org/10.1007/s11517-017-1711-1S611621564Boggiatto P, Fernández C, Galbis A (2009) A group representation related to the stockwell transform. Indiana University Mathematics Journal 58(5):2277–2296Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G et al (2013) 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Europace 15:1070–1118Brown RA, Lauzon ML, Frayne R (2010) A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous s-transform spectrum nonredundantly. IEEE Trans Signal Process 58(1): 281–290Carità P, Corrado E, Pontone G, Curnis A, Bontempi L et al (2016) Non-responders to cardiac resynchronization therapy: insights from multimodality imaging and electrocardiography. A brief review. Int J Cardiol 225:402–407Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357Cleland JGF, Abraham WT, Linde C, Gold MR, Young J et al (2013) An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resyn- chronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart Journal 34(46):3547–3556Cleland JGF, Calvert MJ, Verboven Y, Freemantle N (2009) Effects of cardiac resynchronization therapy on long-term quality of life: an analysis from the Cardiac Resynchronisation-Heart Failure (CARE-HF) study. Am Heart J 157:457–466Cleland JGF, Freemantle N, Erdmann E, Gras D, Kappenberger L et al (2012) Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial. Eur J Heart Fail 14:628–634Egoavil CA, Ho RT, Greenspon AJ, Pavri BB (2005) Cardiac resynchronization therapy in patients with right bundle branch block: analysis of pooled data from the MIRACLE and Contak CD trials. Heart Rhythm 2(6):611–615Engels EB, Mafi-Rad M, van Stipdonk AM, Vernooy K, Prinzen FW (2016) Why QRS duration should be replaced by better measures of electrical activation to improve patient selection for cardiac resynchronization therapy. J Cardiovasc Transl Res 9(4):257–265Engels EB, Végh EM, Van Deursen CJ, Vernooy K, Singh JP, Prinzen FW (2015) T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol 26(2):176–183Eschalier R, Ploux S, Ritter P, Haïssaguerre M, Ellenbogen K, Bordachar P (2015) Nonspecific intraventricular conduction delay: definitions, prognosis, and implications for cardiac resynchronization therapy. Heart Rhythm 12(5):1071–1079Goldenberg I, Kutyifa V, Klein HU, Cannom DS, Brown MW et al (2014) Survival with cardiac-resynchronization therapy in mild heart failure. N Engl J Med 370:1694–1701He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: International joint conference on neural networks, pp 1322–1328Jacobsson J, Borgguist R, Reitan C, Ghafoori E, Chatterjee NA et al (2016) Usefulness of the sum absolute QRST integral to predict outcomes in patients receiving cardiac resynchronization therapy. J Cardiovasc Electrophysiol 118(3):389–395McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 3623:228–238Meyer CR, Keiser HN (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10:459–470Ortigosa N, Giménez VM (2014) Raw data extraction from electrocardiograms with portable document format. Comput Meth Programs Biomed 113(1):284–289Ortigosa N, Osca J, Jiménez R, Rodríguez Y, Fernández C, Galbis A (2016) Predictive analysis of cardiac resynchronization therapy response by means of the ECG. 2016 Comput Cardio 43:753–756. https://doi.org/10.22489/CinC.2016.218-415Ponikowski P, Voors AA, Anker S, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975Rad MM, Wijntjens GW, Engels EB, Blaauw Y, Luermans JG et al (2016) Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm 13(1):217–225Shanks M, Delgado V, Bax JJ (2016) Cardiac resynchronization therapy in non-ischemic cardiomyopathy. Journal of Atrial Fibrillation 8(5):47–52Singh JP, Fan D, Heist EK, Alabiad CR, Taub C et al (2006) Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm 3(11):1285–1292Sohaib SM, Finegold JA, Nijjer SS, Hossain R, Linde C et al (2015) Opportunity to increase life span in narrow QRS cardiac resynchronization therapy recipients by deactivating ventricular pacing: evidence from randomized controlled trials. JACC Heart Fail 3:327–336Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44(4):998–1001Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R et al (2010) Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 363:2385–2395Tereshchenko LG, Cheng A, Park J, Wold N, Meyer TE, Gold MR et al (2015) Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: results from the SMART-AV trial. Heart Rhythm 12(2):2402–2410van Deursen CJ, Vernooy K, Dudink E, Bergfeldt L, Crijns HJ et al (2015) Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol 48(1):45–52Wang TJ (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108:977–982Woods B, Hawkins N, Mealing S, Sutton A, Abraham WT et al (2015) Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart 101:1800–1806Ypenburg C, van Bommel RJ, Borleffs CJ, Bleeker GB, Boersma E et al (2009) Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol 53(6):483–490Yu CM, Hayes DL (2013) Cardiac resynchronization therapy: state of the art 2013. Eur Heart J 34:1396–140
    corecore