7 research outputs found

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    The THAP-zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell cycle target genes

    No full text
    We recently cloned a novel human nuclear factor (designated THAP1) from postcapillary venule endothelial cells (ECs) that contains a DNA-binding THAP domain, shared with zebrafish E2F6 and several Caenorhabditis elegans proteins interacting genetically with retinoblastoma gene product (pRB). Here, we show that THAP1 is a physiologic regulator of EC proliferation and cell-cycle progression, 2 essential processes for angiogenesis. Retroviral-mediated gene transfer of THAP1 into primary human ECs inhibited proliferation, and large-scale expression profiling with microarrays revealed that THAP1-mediated growth inhibition is due to coordinated repression of pRB/E2F cell-cycle target genes. Silencing of endogenous THAP1 through RNA interference similarly inhibited EC proliferation and G1/S cell-cycle progression, and resulted in down-regulation of several pRB/E2F cell-cycle target genes, including RRM1, a gene required for S-phase DNA synthesis. Chromatin immunoprecipitation assays in proliferating ECs showed that endogenous THAP1 associates in vivo with a consensus THAP1-binding site found in the RRM1 promoter, indicating that RRM1 is a direct transcriptional target of THAP1. The similar phenotypes observed after THAP1 overexpression and silencing suggest that an optimal range of THAP1 expression is essential for EC proliferation. Together, these data provide the first links in mammals among THAP proteins, cell proliferation, and pRB/E21F cell-cycle pathways

    The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1

    No full text
    IL-33 is a chromatin-associated cytokine of the IL-1 family that has recently been linked to many diseases, including asthma, rheumatoid arthritis, atherosclerosis, and cardiovascular diseases. IL-33 signals through the IL-1 receptor-related protein ST2 and drives production of pro-inflammatory and T helper type 2-associated cytokines in mast cells, T helper type 2 lymphocytes, basophils, eosinophils, invariant natural killer T cells, and natural killer cells. It is currently believed that IL-33, like IL-1β and IL-18, requires processing by caspase-1 to a mature form (IL-33112–270) for biological activity. Contrary to the current belief, we report here that full-length IL-331–270 is active and that processing by caspase-1 results in IL-33 inactivation, rather than activation. We show that full-length IL-331–270 binds and activates ST2, similarly to IL-33112–270, and that cleavage by caspase-1 does not occur at the site initially proposed (Ser111), but rather after residue Asp178 between the fourth and fifth predicted β-strands of the IL-1-like domain. Surprisingly, the caspase-1 cleavage site (DGVD178G) is similar to the consensus site of cleavage by caspase-3, and IL-33 is also a substrate for this apoptotic caspase. Interestingly, we found that full-length IL-33, which is constitutively expressed to high levels by endothelial cells in most normal human tissues, can be released in the extracellular space after endothelial cell damage or mechanical injury. We speculate that IL-33 may function, similarly to the prototypical alarmins HMGB1 and IL-1α, as an endogenous danger signal to alert cells of the innate immune system of tissue damage during trauma or infection

    Interleukin-33 in health and disease

    No full text
    Interleukin-33 (IL-33) — a member of the IL-1 family — was originally described as an inducer of type 2 immune responses, activating T helper 2 (TH2) cells and mast cells. Now, evidence is accumulating that IL-33 also potently stimulates group 2 innate lymphoid cells (ILC2s), regulatory T (Treg) cells, TH1 cells, CD8+ T cells and natural killer (NK) cells. This pleiotropic nature is reflected in the role of IL-33 in tissue and metabolic homeostasis, infection, inflammation, cancer and diseases of the central nervous system. In this Review, we highlight the molecular and cellular characteristics of IL-33, together with its major role in health and disease and the potential therapeutic implications of these findings in humans

    Interleukin-33 in health and disease

    No full text

    Cell Cycle Regulation During Viral Infection

    No full text
    corecore