77 research outputs found

    Mapping arginine methylation in the human body and cardiac disease

    Get PDF
    Purpose Arginine methylation (ArgMe) is one of the most ubiquitous post-translational modifications, and hundreds of proteins undergo ArgMe in e.g. brain. However, the scope of ArgMe in many tissues, including the heart, is currently under explored. Here, we aimed to 1) identify proteins undergoing ArgMe in human organs, and 2) expose the relevance of ArgMe in cardiac disease. Experimental design We used publicly available proteomic data to search for ArgMe in 13 human tissues. We used glucose to induce H9c2 cardiac-like cell hypertrophy. Results Our results show that ArgMe is mainly tissue-specific; nevertheless, we suggest an embryonic origin of core ArgMe events. In the heart, we found 103 mostly novel ArgMe sites in 58 non-histone proteins. We provide compelling evidence that cardiac protein ArgMe is relevant to cardiomyocyte ontology, and important for proper cardiac function. This is highlighted by the fact that genetic mutations affecting methylated arginine positions are often associated with cardiac disease, including hypertrophic cardiomyopathy. We provide pilot experimental data suggesting significant changes in ArgMe profiles of H9c2 cells upon induction of cell hypertrophy using glucose. Conclusions and clinical relevance Our work calls for in-depth investigation of ArgMe in normal and diseased tissues, using methods including clinical proteomics

    Multimodal nanoparticle imaging agents: Design and applications

    Get PDF
    Molecular imaging, where the location of molecules or nanoscale constructs can be tracked in the body to report on disease or biochemical processes, is rapidly expanding to include combined modality or multimodal imaging. No single imaging technique can offer the optimum combination of properties (e.g. resolution, sensitivity, cost, availability). The rapid technological advances in hardware to scan patients, and software to process and fuse images, are pushing the boundaries of novel medical imaging approaches, and hand-in-hand with this is the requirement for advanced and specific multimodal imaging agents. These agents can be detected using a selection from radioisotope, magnetic resonance and optical imaging, among others. Nanoparticles offer great scope in this area as they lend themselves, via facile modification procedures, to act as multifunctional constructs. They have relevance as therapeutics and drug delivery agents that can be tracked by molecular imaging techniques with the particular development of applications in optically guided surgery and as radiosensitizers. There has been a huge amount of research work to produce nanoconstructs for imaging, and the parameters for successful clinical translation and validation of therapeutic applications are now becoming much better understood. It is an exciting time of progress for these agents as their potential is closer to being realized with translation into the clinic. The coming 5–10 years will be critical, as we will see if the predicted improvement in clinical outcomes becomes a reality. Some of the latest advances in combination modality agents are selected and the progression pathway to clinical trials analysed. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’

    Validation of in-house knowledge-based planning model for advance-stage lung cancer patients treated using VMAT radiotherapy

    Get PDF
    Objectives: Radiotherapy plan quality may vary considerably depending on planner's experience and time constraints. The variability in treatment plans can be assessed by calculating the difference between achieved and the optimal dose distribution. The achieved treatment plans may still be suboptimal if there is further scope to reduce organs-at- risk doses without compromising target coverage and deliverability. This study aims to develop a knowledge-based planning (KBP) model to reduce variability of volumetric modulated arc therapy (VMAT) lung plans by predicting minimum achievable lung volume-dose metrics. Methods: Dosimetric and geometric data collected from 40 retrospective plans were used to develop KBP models aiming to predict the minimum achievable lung dose metrics via calculating the ratio of the residual lung volume to the total lung volume. Model accuracy was verified by replanning 40 plans. Plan complexity metrics were calculated using locally developed script and their effect on treatment delivery was assessed via measurement. Results: The use of KBP resulted in significant reduction in plan variability in all three studied dosimetric parameters V5, V20 and mean lung dose by 4.9% (p = 0.007, 10.8 to 5.9%), 1.3% (p = 0.038, 4.0 to 2.7%) and 0.9 Gy (p = 0.012, 2.5 to 1.6Gy), respectively. It also increased lung sparing without compromising the overall plan quality. The accuracy of the model was proven as clinically acceptable. Plan complexity increased compared to original plans; however, the implication on delivery errors was clinically insignificant as demonstrated by plan verification measurements. Conclusion: Our in-house model for VMAT lung plans led to a significant reduction in plan variability with concurrent decrease in lung dose. Our study also demonstrated that treatment delivery verifications are important prior to clinical implementation of KBP models. Advances in knowledge: In-house KBP models can predict minimum achievable lung dose-volume constraints for advance-stage lung cancer patients treated with VMAT. The study demonstrates that plan complexity could increase and should be assessed prior to clinical implementation

    Collaborating by courier, imaging by mail

    Get PDF
    Core facilities offer visiting scientists access to equipment and expertise to generate and analyze data. For some projects, it might however be more efficient to collaborate remotely by sending in samples

    New AMD3100 derivatives for CXCR4 chemokine receptor targeted molecular imaging studies: synthesis, anti-HIV-1 evaluation and binding affinities

    Get PDF
    CXCR4 is a target of growing interest for the development of new therapeutic drugs and imaging agents as its role in multiple disease states has been demonstrated. AMD3100, a CXCR4 chemokine receptor antagonist that is in current clinical use as a haematopoietic stem cell mobilising drug, has been widely studied for its anti-HIV properties, potential to inhibit metastatic spread of certain cancers and, more recently, its ability to chelate radiometals for nuclear imaging. In this study, AMD3100 is functionalised on the phenyl moiety to investigate the influence of the structural modification on the anti-HIV-1 properties and receptor affinity in competition with anti-CXCR4 monoclonal antibodies and the natural ligand for CXCR4, CXCL12. The effect of complexation of nickel(II) in the cyclam cavities has been investigated. Two amino derivatives were obtained and are suitable intermediates for conjugation reactions to obtain CXCR4 molecular imaging agents. A fluorescent probe (BODIPY) and a precursor for 18F (positron emitting isotope) radiolabelling were conjugated to validate this route to new CXCR4 imaging agents

    Visualizing Kinetically Robust (Co4L6)-L-III Assemblies in Vivo: SPECT Imaging of the Encapsulated [Tc-99m]TcO4- Anion

    Get PDF
    © 2018 American Chemical Society. Noncovalent encapsulation is an attractive approach for modifying the efficacy and physiochemical properties of both therapeutic and diagnostic species. Abiotic self-assembled constructs have shown promise, yet many hurdles between in vitro and (pre)clinical studies remain, not least the challenges associated with maintaining the macromolecular, hollow structure under nonequilibrium conditions. Using a kinetically robust CoIII4L6 tetrahedron we now show the feasibility of encapsulating the most widely used precursor in clinical nuclear diagnostic imaging, the I-emitting [99mTc]TcO4- anion, under conditions compatible with in vivo administration. Subsequent single-photon emission computed tomography imaging of the caged-anion reveals a marked change in the biodistribution compared to the thyroid-accumulating free oxo-anion, thus moving clinical applications of (metallo)supramolecular species a step closer

    Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions

    Get PDF
    The commercial availability of combined magnetic resonance imaging (MRI)/positron emission tomography (PET) scanners for clinical use has increased demand for easily prepared agents which offer signal or contrast in both modalities. Herein we describe a new class of silica coated iron–oxide nanorods (NRs) coated with polyethylene glycol (PEG) and/or a tetraazamacrocyclic chelator (DO3A). Studies of the coated NRs validate their composition and confirm their properties as in vivo T₂ MRI contrast agents. Radiolabelling studies with the positron emitting radioisotope gallium-68 (t1/2 = 68 min) demonstrate that, in the presence of the silica coating, the macrocyclic chelator was not required for preparation of highly stable radiometal-NR constructs. In vivo PET-CT and MR imaging studies show the expected high liver uptake of gallium-68 radiolabelled nanorods with no significant release of gallium-68 metal ions, validating our innovation to provide a novel simple method for labelling of iron oxide NRs with a radiometal in the absence of a chelating unit that can be used for high sensitivity liver imaging

    Development of an anatomically correct mouse phantom for dosimetry measurement in small animal radiotherapy research

    Get PDF
    Significant improvements in radiotherapy are likely to come from biological rather than technical optimization, for example increasing tumour radiosensitivity via combination with targeted therapies. Such paradigms must first be evaluated in preclinical models for efficacy, and recent advances in small animal radiotherapy research platforms allow advanced irradiation protocols, similar to those used clinically, to be carried out in orthotopic models. Dose assessment in such systems is complex however, and a lack of established tools and methodologies for traceable and accurate dosimetry is currently limiting the capabilities of such platforms and slowing the clinical uptake of new approaches. Here we report the creation of an anatomically correct phantom, fabricated from materials with tissue-equivalent electron density, into which dosimetry detectors can be incorporated for measurement as part of quality control (QC). The phantom also allows training in preclinical radiotherapy planning and cross-institution validation of dose delivery protocols for small animal radiotherapy platforms without the need to sacrifice animals, with high reproducibility.Mouse CT data was acquired and segmented into soft tissue, bone and lung. The skeleton was fabricated using 3D printing, whilst lung was created using computer numerical control (CNC) milling. Skeleton and lung were then set into a surface-rendered mould and soft tissue material added to create a whole-body phantom. Materials for fabrication were characterized for atomic composition and attenuation for x-ray energies typically found in small animal irradiators. Finally cores were CNC milled to allow intracranial incorporation of bespoke detectors (alanine pellets) for dosimetry measurement

    64Cu PET Imaging of the CXCR4 Chemokine Receptor Using a Cross-Bridged Cyclam Bis-Tetraazamacrocyclic Antagonist

    Get PDF
    © 2020 by the Society of Nuclear Medicine and Molecular Imaging. Expression of the chemokine receptor chemokine C-X-C motif receptor 4 (CXCR4) plays an important role in cancer metastasis, in autoimmune diseases, and during stem cell-based repair processes after stroke and myocardial infarction. Previously reported PET imaging agents targeting CXCR4 suffer from either high nonspecific uptake or bind only to the human form of the receptor. The objective of this study was to develop a high-stability 64Cu-labeled small-molecule PET agent for imaging both human and murine CXCR4 chemokine receptors. Methods: Synthesis, radiochemistry, stability and radioligand binding assays were performed for the novel tracer 64Cu-CuCB-bicyclam. In vivo dynamic PET studies were performed on mice bearing U87 (CXCR4 low-expressing) and U87.CXCR4 (human-CXCR4 high-expressing) tumors. Biodistribution and receptor blocking studies were performed on CD1-IGS immunocompetent mice. CXCR4 expression on tumor and liver disaggregates was confirmed using a combination of immunohistochemistry, quantitative polymerase chain reaction, and Western blot. Results:64Cu-CuCB-bicyclam has a high affinity for both the human and the murine variants of the CXCR4 receptor (half-maximal inhibitory concentration, 8 nM [human]/2 nM [murine]) and can be obtained from the parent chelator that has low affinity. In vitro and in vivo studies demonstrate specific uptake in CXCR4-expressing cells that can be blocked by more than 90% using a higher-affinity antagonist, with limited uptake in non-CXCR4-expressing organs and high in vivo stability. The tracer was also able to selectively displace the CXCR4 antagonists AMD3100 and AMD3465 from the liver. Conclusion: The tetraazamacrocyclic small molecule 64Cu-CuCB-bicyclam has been shown to be an imaging agent for the CXCR4 receptor that is likely to be applicable across a range of species. It has high affinity and stability and is suitable for preclinical research in immunocompetent murine models
    • 

    corecore