73 research outputs found

    The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex

    Get PDF
    The Aguablanca Ni–(Cu) sulfide deposit is hosted by a breccia pipe within a gabbro–diorite pluton. The deposit probably formed due to the disruption of a partially crystallized layered mafic complex at about 12– 19 km depth and the subsequent emplacement of melts and breccias at shallow levels (<2 km). The ore-hosting breccias are interpreted as fragments of an ultramafic cumulate, which were transported to the near surface along with a molten sulfide melt. Phlogopite Ar–Ar ages are 341– 332 Ma in the breccia pipe, and 338–334 Ma in the layered mafic complex, and are similar to recently reported U–Pb ages of the host Aguablanca Stock and other nearby calcalkaline metaluminous intrusions (ca. 350–330 Ma). Ore deposition resulted from the combination of two critical factors, the emplacement of a layered mafic complex deep in the continental crust and the development of small dilational structures along transcrustal strike-slip faults that triggered the forceful intrusion of magmas to shallow levels. The emplacement of basaltic magmas in the lower middle crust was accompanied by major interaction with the host rocks, immiscibility of a sulfide melt, and the formation of a magma chamber with ultramafic cumulates and sulfide melt at the bottom and a vertically zoned mafic to intermediate magmas above. Dismembered bodies of mafic/ultramafic rocks thought to be parts of the complex crop out about 50 km southwest of the deposit in a tectonically uplifted block (Cortegana Igneous Complex, Aracena Massif). Reactivation of Variscan structures that merged at the depth of the mafic complex led to sequential extraction of melts, cumulates, and sulfide magma. Lithogeochemistry and Sr and Nd isotope data of the Aguablanca Stock reflect the mixing from two distinct reservoirs, i.e., an evolved siliciclastic middle-upper continental crust and a primitive tholeiitic melt. Crustal contamination in the deep magma chamber was so intense that orthopyroxene replaced olivine as the main mineral phase controlling the early fractional crystallization of the melt. Geochemical evidence includes enrichment in SiO2 and incompatible elements, and Sr and Nd isotope compositions (87Sr/86Sri 0.708–0.710; 143Nd/144Ndi 0.512–0.513). However, rocks of the Cortegana Igneous Complex have low initial 87Sr/86Sr and high initial 143Nd/144Nd values suggesting contamination by lower crustal rocks. Comparison of the geochemical and geological features of igneous rocks in the Aguablanca deposit and the Cortegana Igneous Complex indicates that, although probably part of the same magmatic system, they are rather different and the rocks of the Cortegana Igneous Complex were not the direct source of the Aguablanca deposit. Crust–magma interaction was a complex process, and the generation of orebodies was controlled by local but highly variable factors. The model for the formation of the Aguablanca deposit presented in this study implies that dense sulfide melts can effectively travel long distances through the continental crust and that dilational zones within compressional belts can effectively focus such melt transport into shallow environments

    Morphology and microstructure of chromite crystals in chromitites from the Merensky Reef (Bushveld Complex, South Africa)

    Get PDF
    The Merensky Reef of the Bushveld Complex consists of two chromitite layers separated by coarse-grained melanorite. Microstructural analysis of the chromitite layers using electron backscatter diffraction analysis (EBSD), high-resolution X-ray microtomography and crystal size distribution analyses distinguished two populations of chromite crystals: fine-grained idiomorphic and large silicate inclusion-bearing crystals. The lower chromitite layer contains both populations, whereas the upper contains only fine idiomorphic grains. Most of the inclusion-bearing chromites have characteristic amoeboidal shapes that have been previously explained as products of sintering of pre-existing smaller idiomorphic crystals. Two possible mechanisms have been proposed for sintering of chromite crystals: (1) amalgamation of a cluster of grains with the same original crystallographic orientation; and (2) sintering of randomly orientated crystals followed by annealing into a single grain. The EBSD data show no evidence for clusters of similarly oriented grains among the idiomorphic population, nor for earlier presence of idiomorphic subgrains spatially related to inclusions, and therefore are evidence against both of the proposed sintering mechanisms. Electron backscatter diffraction analysis maps show deformation-related misorientations and curved subgrain boundaries within the large, amoeboidal crystals, and absence of such features in the fine-grained population. Microstructures observed in the lower chromitite layer are interpreted as the result of deformation during compaction of the orthocumulate layers, and constitute evidence for the formation of the amoeboid morphologies at an early stage of consolidation.An alternative model is proposed whereby silicate inclusions are incorporated during maturation and recrystallisation of initially dendritic chromite crystals, formed as a result of supercooling during emplacement of the lower chromite layer against cooler anorthosite during the magma influx that formed the Merensky Reef. The upper chromite layer formed from a subsequent magma influx, and hence lacked a mechanism to form dendritic chromite. This accounts for the difference between the two layers

    Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle

    Get PDF
    Experiments with dinitrogen-, nitrite-, nitrate-containing solutions were conducted without headspace in Ti reactors (200°C), borosilicate septum bottles (70°C) and HDPE tubes (22°C) in the presence of Fe and Ni metal, awaruite (Ni80Fe20) and tetrataenite (Ni50Fe50). In general, metals used in this investigation were more reactive than alloys toward all investigated nitrogen species. Nitrite and nitrate were converted to ammonium more rapidly than dinitrogen, and the reduction process had a strong temperature dependence. We concluded from our experimental observations that Hadean submarine hydrothermal systems could have supplied significant quantities of ammonium for reactions that are generally associated with prebiotic synthesis, especially in localized environments. Several natural meteorites (octahedrites) were found to contain up to 22 ppm Ntot. While the oxidation state of N in the octahedrites was not determined, XPS analysis of metals and alloys used in the study shows that N is likely present as nitride (N3-). This observation may have implications toward the Hadean environment, since, terrestrial (e.g., oceanic) ammonium production may have been supplemented by reduced nitrogen delivered by metal-rich meteorites. This notion is based on the fact that nitrogen dissolves into metallic melts
    • …
    corecore