13 research outputs found

    Canonical density matrix perturbation theory

    Full text link
    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free energy ensembles in tight-binding, Hartree-Fock or Kohn-Sham density functional theory. The canonical density matrix perturbation theory can be used to calculate temperature dependent response properties from the coupled perturbed self-consistent field equations as in density functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large non-metallic materials and metals at high temperatures.Comment: 21 pages, 3 figure

    Atomistic Studies of Deformation and Fracture in Materials with Mixed Metallic and Covalent Bonding

    Get PDF
    Materials with high melting temperatures (over 2000°C) tend to be brittle at ambient and even relatively high temperatures. High melting temperatures originate in strong interatomic bonding arising from formation of dd or dp bonds that also affect and/or control crystal structures and properties of extended defects, such as dislocations, grain boundaries. These, in turn, govern plastic deformation and fracture. General goal: Establish relationship between electronic structure and mechanical behavio

    Construction, assessment, and application of a bond-order potential for iridium

    Get PDF
    A tight-binding based bond-order potential (BOP) has been constructed for the fcc transition metal iridium that includes explicitly only d orbitals in the evaluation of the total energy. We show that hybridization between the nearly free electron sp band and the unsaturated covalently bonded d orbitals is important in determining the relative stabilities of the close-packed structures and that this effect can be accurately captured through the use of a central force term. The BOP is found to provide an excellent description of the equilibrium properties of iridium, including its negative Cauchy pressure that is fitted using a many-body repulsive term. The transferability of the BOP is assessed by calculating energy differences between different crystal structures, the energetics of the tetragonal and trigonal deformation paths, the phonon spectra, stacking fault, and vacancy formation energies. Comparison of the results of these studies with either experiments or first principles calculations is found to be good. We also describe briefly the application of the constructed BOP to the atomistic simulation of the core structure of the screw dislocation that led to an explanation of the anomalous deformation and fracture behavior exhibited of iridium

    A Combined \u3ci\u3eAb Initio\u3c/i\u3e and Bond-Order Potentials Study of Cohesion in Iridium

    Get PDF
    The extremely high melting point and excellent resistance to oxidation and corrosion offered by iridium suggest numerous applications of this transition metal in static components at high temperatures and in aggressive environments. However, the mechanical and physical properties of f.c.c. Ir exhibit numerous anomalies when compared to other metals that crystallize in the f.c.c. structure. Notable examples include a negative Cauchy pressure, 1/2 (C12 – C44), brittle transgranular cleavage after a period of plastic flow even in pure single crystals and anomalous [zeta zeta 0] branches in the phonon spectra. Atomistic studies of extended defects are needed to elucidate the origin of anomalous mechanical properties, such as brittleness. For this purpose we developed a Bond-Order Potential (BOP), an O(N) tight-binding formalism, employing physically transparent parameterizations that use experimental and ab initio data, generated in this study using the Full Potential Augmented Plane Wave plus Local Orbitals (APW+lo) method. The constructed BOP reproduces then both equilibrium as well as a variety of non-equilibrium properties of Ir and represents an excellent description of cohesion in f.c.c. Ir. This description of interatomic interactions is imminently suitable for studies of defects, such as dislocations and grain boundaries, that control plastic deformation and fracture

    A Bond-Order Potential Incorporating Analytic Screening Functions for the Molybdenum Silicides

    Get PDF
    The intermetallic compound MoSi2, which adopts the C11b crystal structure, and related alloys exhibit an excellent corrosion resistance at high temperatures but tend to be brittle at room and even relatively high temperatures. The limited ductility of MoSi2 in ambient conditions along with the anomalous temperature dependence of the critical resolved shear stress (CRSS) of the {110)\u3c111], {011)\u3c100] and {010)\u3c100] slip systems and departure from Schmid law behavior of the {013)\u3c331] slip system can all be attributed to complex dislocation core structures. We have therefore developed a Bond-Order Potential (BOP) for MoSi2 for use in the atomistic simulation of dislocations and other extended defects. BOPs are a real-space, O(N), two-center orthogonal tight-binding formalism that are naturally able to describe systems with mixed metallic and covalent bonding. In this development novel analytic screening functions have been adopted to properly describe the environmental dependence of bond integrals in the open, bcc-based C11b crystal structure. A many-body repulsive term is included in the model that allows us to fit the elastic constants and negative Cauchy pressures of MoSi2. Due to the internal degree of freedom in the position of the Si atoms in the C11b structure which is a function of volume, it was necessary to adopt a self-consistent procedure in the fitting of the BOP. The constructed BOP is found to be an excellent description of cohesion in C11bMoSi2 and we have carefully assessed its transferability to other crystal structures and stoichiometries, notably C40, C49 and C54 MoSi2, A15 and D03 Mo3Si and D8m Mo5Si3 by comparing with ab initio structural optimizations
    corecore