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Construction, assessment, and application of a bond-order potential for
iridium

Abstract
A tight-binding based bond-order potential (BOP) has been constructed for the fcc transition metal iridium
that includes explicitly only d orbitals in the evaluation of the total energy. We show that hybridization
between the nearly free electron sp band and the unsaturated covalently bonded d orbitals is important in
determining the relative stabilities of the close-packed structures and that this effect can be accurately
captured through the use of a central force term. The BOP is found to provide an excellent description of the
equilibrium properties of iridium, including its negative Cauchy pressure that is fitted using a many-body
repulsive term. The transferability of the BOP is assessed by calculating energy differences between different
crystal structures, the energetics of the tetragonal and trigonal deformation paths, the phonon spectra,
stacking fault, and vacancy formation energies. Comparison of the results of these studies with either
experiments or first principles calculations is found to be good. We also describe briefly the application of the
constructed BOP to the atomistic simulation of the core structure of the screw dislocation that led to an
explanation of the anomalous deformation and fracture behavior exhibited of iridium.
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A tight-binding based bond-order potential �BOP� has been constructed for the fcc transition metal iridium
that includes explicitly only d orbitals in the evaluation of the total energy. We show that hybridization between
the nearly free electron sp band and the unsaturated covalently bonded d orbitals is important in determining
the relative stabilities of the close-packed structures and that this effect can be accurately captured through the
use of a central force term. The BOP is found to provide an excellent description of the equilibrium properties
of iridium, including its negative Cauchy pressure that is fitted using a many-body repulsive term. The
transferability of the BOP is assessed by calculating energy differences between different crystal structures, the
energetics of the tetragonal and trigonal deformation paths, the phonon spectra, stacking fault, and vacancy
formation energies. Comparison of the results of these studies with either experiments or first principles
calculations is found to be good. We also describe briefly the application of the constructed BOP to the
atomistic simulation of the core structure of the screw dislocation that led to an explanation of the anomalous
deformation and fracture behavior exhibited of iridium.

DOI: 10.1103/PhysRevB.73.064104 PACS number�s�: 61.50.Ah, 61.72.Bb, 71.20.Be, 62.20.Fe

I. INTRODUCTION

Many physical properties of crystalline materials, in par-
ticular plastic deformation and fracture, are controlled by
extended defects such as dislocations and grain boundaries.1

The strength of a grain boundary or the intrinsic mobility of
dislocations, for example, are determined by their structures
at the atomic scale. Over the last forty years, atomistic simu-
lation has proven to be most adept in elucidating the struc-
tures and characteristics of extended defects in materials,
along with their role in physical and mechanical properties.2

Computer simulation naturally provides supreme control
over the “experimental” conditions and also permits the of-
ten complex structures of defects to be visualized straightfor-
wardly. Hence, it is free from many of the intrinsic limita-
tions encountered by microscopy techniques. However, the
fundamental question that must be asked of all atomistic
simulations is the accuracy and transferability of the descrip-
tion of interatomic bonding used, i.e., how well does the
model describe a given material and how trustworthy are its
predictions when applied to crystal defects. In this paper, we
will present an accurate and transferable model for inter-
atomic bonding in the 5d transition metal iridium and we
will demonstrate its suitability for use in the atomistic simu-
lation of crystal defects in this material.

The mechanical properties of iridium are in many ways
exceptional for a metal with the fcc crystal structure. Most
notably, it is found that in tension single crystals fail by
brittle transgranular cleavage at temperatures up to 500 °C
after significant plastic deformation. In polycrystals, both
transgranular cleavage and intergranular fracture are failure
mechanisms, again after significant plastic deformation. Iri-
dium is the only fcc metal to do so. This unusual behavior is
most likely to be linked to the structure of dislocation cores3

and/or grain boundaries in this material. For atomic level

studies of such extended defects a reliable description of
atomic interactions that can be employed in calculations en-
compassing several thousands of atoms is a prerequisite.

The development of interatomic potentials for iridium,
and the transition metals in general, is challenging since it is
essential to properly account for the angularly dependent
bonding that arises from the valence d electrons. Calcula-
tions based on density functional theory �DFT� are able to
describe the electronic structure of any configuration of at-
oms very accurately but these methods still have severe limi-
tations in studies of extended defects because only relatively
small numbers of independent atoms N can be included and
that computational time scales as O�N3�. For bulk materials,
DFT methods require the machinery of Bloch’s theorem to
construct the electronic wave functions that leads to the re-
quirement of periodic boundary conditions, which often is
not convenient for studies of structures that exhibit low sym-
metry. It should be pointed out that in recent years DFT
simulations of isolated dislocations in Mo �Ref. 4� and TiAl
�Ref. 5� have been performed very successfully but these
calculations required considerable computational resources
and similar calculations could not be considered, for ex-
ample, for detailed studies of dislocation motion or for de-
fects with longer periods.

Empirical, many-body schemes in which an embedding
function is constructed such that the bond energy of a given
atom Ebond

i is some function of the local atomic environment
have been very successfully developed for a number of me-
tallic systems. The most well-known schemes are the embed-
ded atom method6 �EAM� and Finnis-Sinclair potentials.7

These potentials have been very widely used since they pro-
vide a relatively simple description of the many-body nature
of cohesion in metals. However, these schemes assume cen-
tral force bonding and thus are unable to describe the strong
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angular dependencies of bonding in transition metals or tran-
sition metal-based intermetallics that arise from the partially
filled d band. Nevertheless, Finnis-Sinclair and EAM poten-
tials have been developed for a number of transition metals,
including iridium,8,9 but they should be treated with caution
since the effects of directional bonding are folded into the
central force scheme in a way that cannot be adequately
physically justified.

Iridium has unusual elastic constants in that its Cauchy
pressure C12−C44 is small and negative.10 In fact, iridium
and the isoelectronic element rhodium are the only cubic
elemental metals to exhibit negative Cauchy pressures.11,12

As a result of the small magnitude of the Cauchy pressure in
iridium, its elastic moduli can be quite well reproduced
within a pairwise description of interatomic bonding since
these interactions imply C12=C44 in the cubic case. Ivanov et
al.13 pursued this approach in the development of a model
for interatomic bonding in iridium. However, as we will
show later, cohesion in iridium exhibits very strong angular
and many-body effects. Thus, while pairwise interactions im-
ply zero Cauchy pressure, it is misleading to assume that the
small magnitude of the Cauchy pressure suggests that a pair-
wise description of interatomic bonding is a good approxi-
mation.

Models for interatomic bonding based on the tight-
binding �TB� approximation14–18 to the full DFT expression
for total energy constitute a scheme through which the many-
body and angular dependencies of bonding in transition met-
als can be accurately described. Depending on the approxi-
mations made in the development of the TB scheme, such
methods can be computationally efficient while maintaining
the predictive power associated with a rigorous quantum-
mechanical derivation. In this paper we will employ one
such TB scheme, namely, the bond-order potential �BOP�
formalism.19–21 which is a real-space, O�N�, orthogonal TB
scheme. It was advanced by Pettifor and co-workers who
have shown it to be eminently suitable for the atomistic
simulation of extended defects in transition metals,22–24 tran-
sition metal-based intermetallics,25 and covalently bonded
materials.26 In the following section we summarize briefly
the BOP scheme and in the subsequent section describe in
detail the construction of the BOP for iridium. The remainder
of the paper is then devoted to the testing of this BOP with
the aim to demonstrate that it is transferable to environments
significantly different from the ideal fcc lattice and thus suit-
able for atomistic modeling of extended crystal defects. We
demonstrate the latter point by the calculation of the core
structure of the screw dislocation in iridium, the results of
which led to the development of a model for the unusual
mechanical properties of iridium.3

II. BOND-ORDER POTENTIALS

In the BOP formalism, the total energy Etot is written as a
sum of three terms24,25,27

Etot = Ebond + Eenv + Epair, �1�

where Ebond describes the cohesion that originates from the
formation of a valence band when the atoms are brought

together, Eenv is a many-body repulsive term that is used to
fit Cauchy pressures,28 and Epair is a pairwise interaction that
includes all interactions not explicitly covered in the bond or
many-body repulsive terms but mainly serves to provide
short-range repulsion.15 The many-body repulsive and pair-
wise terms will be discussed in detail in subsequent sections.

Using the standard result,16–18 the bond energy is written
as

Ebond = �
i,j�i

�
�,�

� j�,i�Hi�,j�, �2�

where i and j label atoms, � and � label orbitals, and � and
H are the bond-order and Hamiltonian matrices, respectively,
in the basis of real, orthonormal free-atom-like states �i��.20

In the two-center approximation, the off-diagonal elements
of the Hamiltonian matrix are the usual Slater-Koster bond
integrals.14,29 The diagonal elements of the Hamiltonian are
adjusted self-consistently during a simulation to enforce the
condition of local charge neutrality. Due to the very short
screening lengths in metals, the requirement of local charge
neutrality is physically intuitive and allows for a rapid com-
putation of forces via the Hellmann-Feynman theorem.30 The
force acting on atom k with position vector Rk arising from
the bond term is then

Fk
bond = − �

i,j�i
�
�,�

� j�,i��Rk
Hi�,j�. �3�

In the evaluation of the bond-order, we dispense with direct
matrix diagonalization or k-space integration as is common
in TB calculations �for example, Sutton et al.31�. Instead, we
utilize the concept of the exact many-body expansion for the
bond-order19,21 and the Lanczos recursion algorithm.32 A
complete discussion of this method is provided in Horsfield
et al.20 A finite electron temperature Te is introduced via the
Fermi-Dirac distribution to ensure the numerical stability of
the method and to smooth long-range Friedel oscillations.33

We find optimum results with kBTe=0.3 eV.

III. CONSTRUCTION OF A BOND-ORDER POTENTIAL
FOR IRIDIUM

The BOP formalism is a semiempirical scheme, meaning
that the three terms in Eq. �1� contain adjustable parameters
that are fitted to experimental or ab initio data. All semi-
empirical schemes must then be carefully tested to ensure
they are transferable to structures that were not fitted explic-
itly. The BOP for iridium was parametrized sequentially
starting with the bond term followed by the many-body re-
pulsive term and finally the pairwise interaction. A small set
of experimental and ab initio data was used in the fitting and
at each stage of the parametrization we aimed to justify our
methods and procedures physically. In this section we will
provide a detailed description of the parametrization along
with a critical discussion of the various approximations we
have adopted.

A. Construction and parametrization of bond term

The construction and parametrization of Ebond requires
that �i� the appropriate basis functions, i.e., s, p, d, or some
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combination of these are selected �note that more basis func-
tions lead to a more computationally demanding model�; �ii�
the radial dependencies of the bond integrals are established;
�iii� the band filling, or number of electrons per atom, is
determined, and �iv� the appropriate number of recursion lev-
els Nrec in the evaluation of the bond-order via the Lanczos
recursion algorithm is ascertained. Nrec should be chosen so
that the BOP is able to reproduce the most important trends
in structural stability, elastic constants, etc., when compared
with k-space TB, bearing in mind that fewer recursion levels
lead to greater computational efficiency. These four steps in
the construction of the BOP are discussed in detail in the
forthcoming sections.

1. Basis functions

The physical properties of the transition metals are domi-
nated by the cohesion mediated by the valence d electrons.34

Well-known trends in structural stability and cohesive energy
are observed as the d band is filled with electrons18 and
moreover the d electrons then impart a strong angular char-
acter to the interatomic bonding. The sp electrons provide
around 1 eV atom−1 to the cohesive energy across the transi-
tion metal series but do not lead to strong angularly depen-
dent bonding. It is therefore customary in the development of
TB models for the transition metals to include only d elec-
trons explicitly in the bond term and describe the contribu-
tion of the nearly free �NFE� sp electrons through a central
force term �see, for example, Ref. 35�.

We have studied the trends in structural stability as the d
band is filled with electrons using the ab initio linear muffin-
tin orbital36 �LMTO� method within the atomic sphere ap-
proximation including the combined correction. Structural
energy differences were calculated using the frozen potential
approximation37–39 �FPA� whereby we first self-consistently
calculated the ground-state charge density �fcc

sc and the corre-
sponding atomic sphere potentials and densities of states
�DOS� nfcc�E�, for fcc iridium at the calculated equilibrium
volume per atom. We then used the atomic sphere potentials
ascertained self-consistently for the fcc structure in calcula-
tions of the total energy and DOS of the bcc and hcp lattices
�throughout this paper, the hcp structure has the ideal c /a
ratio� at the same volume per atom but without self-
consistently updating the potential �i.e., keeping the potential
frozen�. This frozen potential corresponds to a trial charge
density �t and the error in the calculated energy compared
with the value evaluated self-consistently is of second order
in �t−�sc. Structural energy differences � may then be writ-
ten as

� = �EF

En�E�dE − �EF

Enfcc�E�dE , �4�

where EF is the Fermi energy and n�E� represents the DOS
calculated for the alternative crystal structures using a frozen
potential.

The dependencies of the hcp-fcc and bcc-fcc structural
energy differences on the number of electrons per atom N
calculated from the total spd DOS for iridium, is presented in
Fig. 1�a�. This plot shows that at the band filling correspond-

ing to iridium, N=9, the fcc structure is most stable. At this
band filling, the hcp-fcc energy difference is relatively large,
around 200 meV atom−1, implying a large intrinsic stacking
fault energy in this material that is confirmed by
experiment40 and ab initio calculations.41,42 We also observe
the close-packed-bcc-close-packed trend in structural stabil-
ity as the band filling increases across the non-magnetic tran-

FIG. 1. Dependencies of hcp-fcc and bcc-fcc energy differences
on band filling �a� as functions of total band filling calculated using
LMTO and FPA from the total spd DOS for iridium �b� as functions
of d band filling calculated using LMTO and FPA resolved into
contribution from d band �c� as a function of d band filling calcu-
lated using k-space TB for a d band with no hybridization with the
sp band.
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sition elements, which is attributed to the large fourth mo-
ment contribution of the bcc structure.16,18 The hcp-fcc and
bcc-fcc structural energy differences calculated using Eq. �4�
and the d orbital partial DOS resolved from the spd electron
calculations are presented as a function of the d band filling
in Fig. 1�b�. In this plot, a band filling of Nd=7.1 electrons
per atom corresponds to iridium, as determined by our
LMTO calculations. We ascribe the noninteger band filling to
the effects of hybridization.The correspondence between
Figs. 1�a� and 1�b� verifies that the valence d electrons are
responsible for the major trends in structural stability in the
transition metals.

The LMTO calculations on which the structural energy
difference presented in Figs. 1�a� and 1�b� are based include
explicitly the effects of hybridization between the s, p, and d
orbitals. In contrast, calculations performed using a canoni-
cal d band where hybridization between the d electrons and
the NFE sp band is not included, as in Ref. 39, do not predict
correctly the structural stability of the late transition ele-
ments. In Fig. 1�c�, we plot the dependencies of the hcp-fcc
and bcc-fcc structural energy differences on Nd calculated
using k-space integration of a TB Hamiltonian that includes
only d electrons. The volume per atom in each structure is
now equal to the experimental volume per atom in the fcc
structure, i.e., 3 .8393/4 Å3. The dd�, dd�, and dd� bond
integrals, described in detail in the next section, were evalu-
ated by applying the orbital downfolding technique to the
results of self-consistent spd-orbital LMTO calculations for
fcc iridium. This plot, along with the results presented in
Refs. 39 and 21, indicates that a basis containing only d
electrons does predict correctly the fourth moment driven
close-packed-bcc-close-packed trend in structural stability
but it does not predict the correct stable close-packed struc-
ture, particularly for Nd	7. The fcc structure is found to be
most stable for 7.75
Nd
8 but in this range, the energy
differences between the fcc and both the bcc and hcp struc-
tures are not in good agreement with the results presented in
Figs. 1�a� and 1�b�. Furthermore, we found that band fillings
in this range produced interatomic potentials that were a poor
description of the properties of fcc iridium and displayed
very limited transferability to other structures. In the devel-
opment of the BOP, guided by our LMTO calculations, we
used a d band filling of Nd=7.1 electrons per atom. At this
band filling, the bcc-fcc energy difference from an unhybrid-
ized d band calculated using k-space TB is in excellent
agreement with the results of the FPA calculations, although
the hcp structure is predicted to be more stable than the fcc
structure.

The role of pd and sd interactions in the determination of
the hcp-fcc energy difference in iridium were studied by em-
ploying an spd electron TB model �from Figs. 1�a� and 1�b�,
it is evident that ss and pp interactions do not affect this
energy difference appreciably�. The spd electron TB Hamil-
tonian was constructed by determining the radial dependen-
cies of the bond integrals ss� through dd� using the proce-
dure described in the Sec. III A 2 while their angular
dependencies were given by the usual Slater-Koster form.14

The energies of the hcp and fcc structures were calculated at
the experimental volume per atom by k-space integration of
the TB Hamiltonian and the total energy difference was de-

composed into bond energy differences associated with each
of the two-center integrals along with the corresponding pro-
motion energies at a band filling of N=9. This decomposition
of the hcp-fcc energy difference verified that it is only
weakly dependent on the ss�, pp�, and pp� interactions
and, similarly, we also found that the sd�, pd�, and pd�
interactions do not provide any significant contribution. This
decomposition suggested that the fcc structure is stabilized
primarily by the dd� and dd� interactions at first nearest
neighbors and that the contribution from the bonds of dd�
character are negligible. The contributions of the first nearest
neighbor dd� and dd� bonds to the energy difference be-
tween the hcp and fcc structures were 81.8 and
29.7 meV atom−1, respectively.

In order to investigate the applicability of the d bond
model employed in the development of the BOP, we also
decomposed the hcp-fcc energy difference into the corre-
sponding dd�, dd�, and dd� bond energies differences at
first and second nearest neighbors via k-space integration of
a TB Hamiltonian constructed from only d electrons at a
band filling of Nd=7.1. The radial dependencies of the dd�
��=� ,� ,�� bond integrals were the same as those used in
the spd electron Hamiltonian and thus any differences in the
dd� bond energies when compared with the spd electron cal-
culations were due to changes in the corresponding bond-
order matrix elements because of the inclusion of additional
basis functions of s and p character and the effects of hybrid-
ization. At the band filling corresponding to iridium, the hcp
structure was favored by both the dd� and dd� interactions,
where the first nearest neighbor hcp-fcc bond energy differ-
ences are −12.1 and −31.9 meV atom−1, respectively. In con-
currence with the results of the spd electron model, �i� the
energy difference is overwhelmingly determined by the dd�
and dd� bonds formed at first nearest neighbors, �ii� the dd�
bonds at first nearest neighbors favor the fcc structure more
strongly than the corresponding dd� bonds, and �iii� the con-
tribution of the dd� bonds to the energy difference was found
to be negligible. Hence, the relative values of the dd� bond
energy differences provide strong evidence that the d elec-
tron only model does accurately describe the angular charac-
teristics of interatomic bonding at first nearest neighbors, in
comparison with the spd electron model, although the hcp-
fcc energy difference is of the incorrect sign.

We found that the effects of hybridization between the d
band and the NFE sp band can be approximated to an excel-
lent extent by the addition of a pairwise, central force term in
the total energy. By terminating the pairwise term beyond
third nearest neighbors in the fcc lattice, we found it could be
parametrized such that it makes up the difference between
the hcp-fcc energy difference calculated from the bond term
and the value determined ab initio. Since the sp band gives
rise to no strong angular dependencies and given that we
have demonstrated conclusively that the hcp-fcc energy dif-
ference arises entirely from d electrons, albeit under the in-
fluence of hybridization with the NFE band, the use of a
central force term to approximate the effects of this hybrid-
ization in a d electron only model is quite reasonable. In this
manner, the total energies of the fcc and hcp structures are
affected, but not the angular dependencies of interatomic
bonding at short range. In the development of the BOP for
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iridium, we have incorporated this pairwise interaction with
the pairwise term described in Sec. III C.

Using a basis of only d electrons in calculating the bond
energy and emulating the effects of sp-d hybridization with a
pairwise, central force term, we have also ensured that the
model is computationally efficient. The explicit inclusion of
s and p basis functions in the TB Hamiltonian would result
in a more computationally demanding scheme. This becomes
particularly pronounced when the BOP formalism is adopted
since the width of the NFE sp-band around a factor of 2
greater than that of the d band and thus the number of levels
in the Lanczos recursion chain would have to be doubled.

2. Radial dependencies of bond integrals

The radial dependencies of bond integrals hll���R� were
determined by employing the first-principles TB-LMTO
method which utilizes a small basis of atom-centered, short-
ranged orbitals. This was done by applying the orbital down-
folding technique to a self-consistent TB-LMTO electronic
structure calculation for iridium and evaluating the integrals
numerically for different volumes of the fcc unit cell. For
implementation into the BOP scheme, the dependence of the
bond integrals on the radial distance between the atoms
needs to be represented analytically by a continuous and dif-
ferentiable function. For this purpose we have adopted the
Goodwin-Skinner-Pettifor �GSP� function43 Sll���R�, such
that

hll���R� = hll���R0�Sll���R� �5�

and

S�R� = 	R0

R

n

exp�n�	R0

Rc

nc

− 	 R

Rc

nc� , �6�

where we have suppressed the subscripts ll�� in Eq. �6� for
clarity. Here R0 is the first nearest neighbor spacing in the
ideal lattice and Rc, n, and nc are adjustable parameters. The
angular dependencies of the bond integrals are given by the
usual Slater-Koster form.14 The GSP functions are aug-
mented by a polynomial of fifth order beyond a certain dis-
tance R1 in order to achieve a smooth cutoff at Rcut. The
introduction of a cut-off tail is important to ensure the inter-
actions remain short ranged.

Since the bond part is constructed from a basis of only d
electrons, there are only three bond integrals to be fitted,
dd�, dd�, and dd�. These bond integrals are cut-off at Rcut
=4.3 Å which is between second and third nearest neighbors
in the fcc lattice and the cut-off tail is added at R1=3.3 Å.
The parametrization of the three GSP functions is given in
Table I. In Fig. 2 we plot the radial dependencies of bond
integrals described by Eq. �5�, along with their values evalu-
ated using first-principles TB-LMTO.

3. Number of recursion levels

The number of exact recursion levels employed in the
Lanczos continuous fraction when evaluating the bond-order
Nrec affect significantly the accuracy and computational cost
of the model, thus it is essential that the proper compromise

is reached. From the point of view of forming chemical
bonds between neighbors, atoms that are very distant exert
little influence and thus very long hopping paths provide
little additional information regarding the shape of the DOS.
Therefore, the use of relatively a small number of levels in
the Lanczos recursion chain can, particularly in the case of a
small band width, provide excellent convergence to the full
k-space results while also providing a computationally effi-
cient, real-space model.

In Fig. 3 we plot the hcp-fcc and bcc-fcc energy differ-
ences as functions of the filling of the d band calculated
using k-space integration of the TB Hamiltonian �as in Fig.
1�c�� and BOP formalism at four levels of Lanczos recursion,
at which all hopping paths of length nine are explicitly in-
cluded. It is evident that an excellent agreement with the full
k-space result is achieved in this case. Nastar and Willaime44

demonstrated that the major trends in the elastic properties of
the transition metals are reproduced when only five moments
of the DOS were included in their d electron TB model. Thus
the use of four recursion levels in the BOP for iridium as-
sures both excellent accuracy and computational efficiency.

B. Parametrization of many-body repulsive term

Only Ebond and Eenv have nonzero contributions to Cauchy
pressures in the BOP formalism since they involve many-
body interactions while Epair does not contribute.29 Previous
studies have shown that the many-body cohesion arising

TABLE I. Parametrization of the GSP functions for iridium dd�
bond integrals.

ll�� hll���R0� �eV� R0 �Å� n Rc �Å� nc

dd� −1.35966 2.714583 1.75339 3.30 3.71958

dd� 0.564208 2.714583 1.70200 3.30 5.32968

dd� −0.0646463 2.714583 1.83500 3.30 7.97587

FIG. 2. The radial dependencies of the dd�, dd�, and dd� bond
integrals in fcc iridium. The symbols correspond to the results of
first-principles TB-LMTO calculations. The lines are the best fits
made using the Goodwin-Skinner-Pettifor function �Eq. �6��.
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from Ebond produces Cauchy pressures that are generally in
poor agreement with the results of ab initio calculation or
experiment and, moreover, are always positive. For many
years it was believed that deficiencies in the description of
cohesion led to these poor predictions for the elastic proper-
ties. However, systematic FP-LMTO calculations have
shown that this is not the case.28 Instead, it was found that
the negative Cauchy pressures exhibited by metals such as
iridium and rhodium and many transition metal-based inter-
metallic compounds arise from a many-body repulsive term.
This term represents physically the overlap repulsion experi-
enced by the sp electrons when they are squeezed into the
ion-core regions by the strong cohesion provided by the d
electrons.45

It was proposed by Nguyen-Manh et al.28 to represent the
many-body repulsive term within the BOP formalism as a
screened Yukawa potential �see also Refs. 24 and 25�

Eenv =
1

2 �
i,j�i

B
exp�− ��Rij − 2Rcore��

Rij
, �7�

where

� = �0 + ��
k�i

C exp�− Rik�1/�
�8�

and B, �0, , C, and � are fitting parameters. Rcore is related
to the radius of the valence s orbital. As in the case of the
radial dependencies of the bond integrals, the many-body
repulsive term is augmented by a polynomial cut-off tail to
ensure it decreases to zero smoothly.

The many-body repulsive term is parametrized to make
up the difference between the Cauchy pressure given by the
bond part and its experimental value. The Cauchy pressure
given by the bond term is 0.3776 eV Å−3 and the parametri-
zation given in Table II enabled us to fit the experimental
value of the Cauchy pressure exactly. The cut-off tail was
added at 3.1 Å and was terminated at 4.2 Å.

C. Parametrization of pairwise interaction

The final term to be parametrized in our sequential fitting
procedure is the pairwise interaction Epair. This term repre-
sents all of the contributions to interatomic bonding that are
not explicitly included in the preceding two terms, although
it mainly serves to provide short range repulsion.15,29 The
pairwise term takes the same form as in Ref. 24, namely, a
sum of cubic splines

Epair =
1

2 �
i,j�i

�
k=1

4

Ak�Rk − Rij�3H�Rk − Rij� , �9�

where the index k labels node points Rk, and coefficients Ak
that are fitting parameters and H�x� the Heaviside step func-
tion. With this functional form, we ensure that the first and
second derivatives are continuous everywhere and that the
function smoothly decreases to zero at the cutoff distance.

The pairwise term is used to fit remaining elastic con-
stants, the fcc lattice parameter and cohesive energy. Further-
more, we have selected the positions of the node points so
that we are able to fit the hcp-fcc structural energy difference
calculated ab initio. In this way the pairwise term is also
used to make up the difference between the structural energy
difference calculated using the bond and many-body repul-
sive terms and the first-principles calculated value. In this
manner the pairwise central force interaction also represents
the effects of the NFE-d hybridization on the energy differ-
ences between different close-packed structures, as discussed
in Sec. III A 1.

The parametrization of the pairwise term is presented in
Table III. The corresponding pair potential is plotted in Fig. 4
which illustrates that it provides weak cohesion at second
nearest neighbors and beyond. This can be physically justi-
fied by considering that it also represents the cohesive con-
tributions from the NFE sp band. The equilibrium properties
of iridium fitted during the parametrization are summarized
in Table IV. Each of these values were fitted exactly.

IV. TESTING THE BOND-ORDER POTENTIAL

The reason for the development of the BOP is its use in
studies of crystal defects such as dislocations, high-angle

FIG. 3. hcp-fcc and bcc-fcc energy differences calculated as a
function of d band filling using k-space TB and the BOP formalism
at four levels of Lanzcos recursion.

TABLE II. Parametrization of the many-body repulsive term.

B �eV� �0 �Å−1�  �Å−1� C �Å−�� � Rcore �Å�

37.21 2.0 1.5 110.0 2.0 1.0

TABLE III. Parametrization of the pairwise term.

k Rk �Å� Ak �eV Å−3�

1 3.36945 1.621484180452

2 4.40000 −0.034464172823

3 5.23000 1.479986236465

4 5.33000 −1.300753052492
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grain boundaries, vacancies, etc. Such defects generally re-
sult in a different local coordination than in the fcc lattice.
Hence, the ability of the BOP to deal with structures with
symmetries and coordination numbers that differ from those
associated with the close-packed environment is important
when assessing the situations to which the application of the
BOP is appropriate. In order to test the transferability of the
developed BOP, we performed the following calculations: �i�
energy differences between the fcc and other crystal struc-
tures as functions of atomic volume, �ii� the tetragonal and
trigonal deformation paths, and �iii� the phonon spectra of
fcc iridium along three high symmetry directions. The results
of the former two calculations are compared with identical
calculations performed ab initio and the latter with experi-
mental results. We also calculate the energies of some simple
crystalline defects and compare these results with experiment
and/or values calculated ab initio.

A. Relative structural stability

The fcc-hcp energy difference was fitted during the con-
struction of the potential but the transferability of the BOP to
the more open A15, bcc, and simple cubic �sc� structures is
of interest. The ab initio calculations of the energies of fcc,
hcp, A15, bcc, and sc iridium were made using the mixed-
basis, full potential augmented plane-wave plus local orbitals
�APW+lo� method48,49 as implemented in the WIEN2k pack-
age of codes.50 The APW+lo calculations were all per-
formed using the GGA xc functional of Perdew, Wang, and
Ernzerhof51 and the basis set was found to be optimized with

RMTKmax=10.5 and lmax=12. An extra basis function of d
character was added at 2.25 Ry in order to increase the flex-
ibility of the basis set. The muffin tin radius was set to 2.2
Bohr radii. The calculations used a k-point mesh of 36�36
�36 in the full Brillouin zone and were converged to a tol-
erance better than 10−6 Ry. Interestingly, our ab initio calcu-
lations found bcc iridium to be ferromagnetic in accordance
with the Stoner theory of itinerant electron ferromagnetism.52

At its equilibrium volume, our spin-polarized APW+lo cal-
culations predict bcc iridium to have a magnetic moment of
0.553�B atom−1 corresponding to a reduction of energy com-
pared with non-spin-polarized calculations of
20 meV atom−1.

In Fig. 5 we present the dependencies of the energy dif-
ference relative to equilibrium fcc on atomic volume for the
five structures under consideration calculated using the BOP
and ab initio. We have normalized the atomic volumes pre-
dicted from ab initio calculations by the factor
�3.839/3.8276�3 /4 in order to allow a direct comparison with
the BOP results since in the BOP the volume per atom is
fitted to the experimental value. As expected, the agreement
between BOP and ab initio methods for the close-packed
structures is excellent given that these were used in the pa-
rametrization. The transferability of the BOP to the open A15
and bcc structures is also good. It is seen that the energy
differences and equilibrium volumes calculated using the

FIG. 4. Radial dependence of the pairwise term.

TABLE IV. Physical properties fitted during parametrization. Experimental and ab initio calculated values
are reproduced exactly.

a �Å� Ecoh �eV�
C11

�eV Å−3�
C12

�eV Å−3�
C44

�eV Å−3�
E�hcp�−E�fcc�
�meV atom−1�

3.839a 6.93b 3.620c 1.510c 1.598c 78.8d

aReference 46.
bReference 47.
cReference 10.
dSee Sec. IV A.

FIG. 5. Energy differences calculated as functions of volume per
atom. The circles are the results of ab initio calculation where the
atomic volumes have been normalized by the experimental volume
per atom. The solid lines refer to the results of calculations made
using the BOP.
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BOP and ab initio are the same within 5%. The transferabil-
ity of the BOP to the sc structure is less satisfactory with an
error of around 12% in the equilibrium atomic volume. How-
ever, the relatively poor transferability of the BOP to the sc
structure is not of great concern since the energy of this
structure is so high that it is extremely unlikely that it would
ever occur in extended defects. The key result of this test is
that the BOP predicts the same order of structural stability as
ab initio calculations, i.e., fcc→hcp→A15→bcc→sc.

The transferability of the BOP for iridium to open crystal
structures such as bcc could be significantly improved by the
introduction of screening functions for the bond
integrals.24,53–55 Owing to the relatively small difference in
separation of first and second nearest neighbors in such
structures, the bond integrals are strongly environmentally
dependent which in turn leads to significant discontinuities in
their gradients between neighboring shells of atoms. The
analytic screening functions advanced by Nguyen-Manh et
al.53 allow these environmental dependencies to be included
into TB models and they were found to be critical in the
development of BOPs for bcc metals such as molybdenum.24

However, we have opted not to implement them for Ir since
they do result in a notable increase in computational demand
that cannot be justified in the study of defects in close-
packed structures where the formation of such structures is
highly unlikely.

It is possible that the errors in the predictions of the en-
ergy difference and equilibrium volume for the sc structure
originate from the short-range repulsion provided by the
pairwise and many-body repulsive terms in the BOP since
the first nearest neighbor distance in the sc structure is very
small �89% of the first nearest neighbor distance in the fcc
structure at the same volume per atom�. The short-range be-
havior of the potential is not fitted to any experimental or ab
initio calculated property. Girshick et al.22,23 attempted to
ameliorate this weakness in the BOP formalism by ensuring
that their BOP constructed for titanium fitted the “Rose
curve” universal equation of state.56,57 However, the success
of such an approach cannot be judged since no comparison
of energy differences between close-packed and open struc-
tured calculated using the constructed BOP and ab initio
methods was reported in Refs. 22 and 23. The argument
based on short interatomic distances in the sc structure is not
entirely satisfactory because at the same atomic volume, the
pairs of atoms on the cube faces in the A15 structure have the
identical separation as first nearest neighbors in the sc struc-
ture. In the case of the BOP for iridium, the predictions of
the A15-fcc energy difference and the equilibrium atomic
volume of the A15 structure are in excellent agreement with
ab initio calculations. It is interesting to point out that in
molybdenum, when the BOP does not incorporate screening
of the bond integrals,24 the sc-bcc and A15-bcc energy dif-
ferences are overestimated by factors of 1.5 and 3, respec-
tively, when compared with ab initio calculations. This result
does suggest that the short range behavior of the BOP is
responsible for the observed errors. However, once the envi-
ronmental dependencies of the bond integrals are incorpo-
rated into the BOP via the introduction of analytic screening
functions, the sc-bcc energy difference predicted is in exact
agreement with ab initio calculations while the error in the

prediction of the A15-bcc energy difference increases by a
factor of 2. It appears difficult to attribute the poor prediction
of the sc-fcc energy difference by the BOP for iridium to the
short-range properties of the potential alone since the results
in Ref. 24 indicate that the environmental dependencies of
the bond part may also have a significant role to play.

B. Tetragonal and trigonal deformation paths

A reliable test of the transferability of a scheme describ-
ing interatomic bonding to structures with reduced symmetry
is the calculation of the energetics of deformation paths that
can be directly compared with ab initio calculations.24,58 De-
formation paths are generated by applying a homogeneous
strain that transforms one highly symmetric structure to an-
other through intermediate structures that exhibit greatly re-
duced symmetry. In the present study, the tetragonal and
trigonal deformation paths, described in detail in Ref. 58
have been studied.

The tetragonal deformation path, also known as the Bain
path, transforms in an elemental solid the bcc lattice continu-
ously to the fcc lattice. In this process the bcc lattice is
strained parallel to �001� at constant volume and the param-
eter p, which is equal to the c /a ratio of the corresponding
intermediary tetragonal cell, is used to characterize the posi-
tion along the deformation path. This corresponds to the ho-
mogeneous straining described by the Lagrange strain tensor
of finite deformations

�11 = �22 = �p−2/3 − 1�/2,

�33 = �p4/3 − 1�/2,

�12 = �13 = �23 = 0 �10�

in the coordinate system where the x, y, and z axes are par-
allel to the �100�, �010�, and �001� directions, respectively.
The special points on the deformation path are p=1, which
corresponds to the original bcc lattice, and p=�2, which cor-
responds to the fcc lattice. For the tetragonal deformation
path, the difference in energy from the ground state structure
vs p, calculated using the BOP and the ab initio full potential
linear augmented plane-wave �FLAPW� method59 is pre-
sented in Fig. 6.

The trigonal deformation path also continuously trans-
forms the bcc lattice to the fcc lattice but passes through the
sc structure. This path is described by the same Lagrange
strain tensor as the tetragonal path but with the x, y, and z

axes parallel to �11̄0�, �112̄�, and �111�, respectively. In this
case, the cell is extended parallel to �111� at constant volume.
Special points along the trigonal path are p=1, which corre-
sponds to the bcc lattice p=2, which corresponds to the sc
lattice and p=4 which corresponds to the fcc lattice. For the
trigonal path, the results analogous to those shown in Fig. 6
are presented in Fig. 7.

Figures 6 and 7 show for both the tetragonal and trigonal
deformation paths an outstanding agreement between calcu-
lations employing the BOP and the ab initio method. The
transferability of the BOP to the bcc structure is very good
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but larger errors are seen in the transferability to the sc struc-
ture, as also seen previously in Fig. 5. In the latter, the sc-fcc
energy difference was determined at the equilibrium volume
of the sc structure whereas in the calculation of the trigonal
deformation path, the volume per atom of the sc structure is
around 35% smaller than the equilibrium value. This is the
reason for the significantly different values of the energies of
the sc structure in Figs. 5 and 7, respectively. In contrast, the
volume per atom of the bcc structure in Figs. 6 and 7 is only
4% smaller than the equilibrium value given by the mini-
mum in the dependence of the energy of bcc iridium on
atomic volume in Fig. 5. However, the purpose of the study
of deformation paths is to compare the BOP and ab initio
calculations for the same structures. The most notable out-
come of this test is the overall close agreement between the
predictions of the BOP and ab initio methods for the energy
differences at intermediate points along both paths. Struc-
tures encountered at intermediate values of p exhibit very
little symmetry and thus provide an excellent assessment of
the transferability of the BOP to crystal defects where the
local symmetry and related bond angles and coordination

numbers may differ significantly from the fcc environment.
In the calculation of the energetics of the trigonal path

using the FLAPW method, the energy difference is observed
to change relatively slowly as a function of the parameter p
in the range 1.4
 p
3.0. It is not possible to decompose the
total energy calculated using first-principles methods such as
FLAPW into purely cohesive and repulsive interactions, etc.
Hence, we cannot offer a clear and unambiguous physical
explanation for this behavior. The energy difference calcu-
lated using the BOP for iridium changes rapidly as function
of p in the same range which we attribute to the increasing
contribution of the short range repulsion provided by the
pairwise term as the interatomic distance decreases during
the formation of the sc structure at p=2.

C. Phonon spectra of iridium

The phonon spectra of a crystalline solid provide a wealth
of information over all length scales—at long wavelengths
the elastic properties of the lattice are examined while at
short wavelengths the nature of interatomic bonding is di-
rectly probed. The calculation of phonon spectra is a particu-
larly good test of an interatomic potential for these reasons.
These calculations can also indicate any possible structural
instabilities in the ground-state crystal structure by the pres-
ence of soft or imaginary branches.

The phonon spectra of iridium are particularly interesting
since several anomalies are observed experimentally.60 Spe-
cifically, in the ���0� branches, local minima and inflexion
points are found that cannot be accounted for by crystal sym-
metry arguments and are likely to be due to the strong angu-
lar character of interatomic bonding in iridium.

We have calculated the phonon spectra of iridium along
the ��00�, ���0�, and ����� directions using the method of
frozen phonons.61 These calculations were performed by
making supercells of 20 periods of the underlying lattice
along �100�, �110�, and �111�. The amplitude of the applied
sinusoidal waves was 0.02 Å. Phonon frequencies were cal-
culated at wave vectors corresponding to �=0.05n with n
=0,1 ,2 , . . . ,20 necessary to ensure the waves were com-
mensurate with the supercell. At the wave vectors sampled,
the mean square displacement was 0.0002 Å2. The calculated
phonon spectra along with experimental results from Heid et
al.60,62 are presented in Fig. 8.

The overall agreement between the calculations employ-
ing the BOP for iridium and experiment is excellent. Since
the experimental elastic constants of iridium were fitted ex-
actly, both sets of spectra are practically identical at long
wavelengths. However, the agreement between experiment
and theory at shorter wavelengths is also very good and thus
provides a clear indication that the constructed BOP is a very
good description of interatomic bonding in iridium.

A notable success of the BOP for iridium is its accurate
prediction of the anomaly in the ���0� T2 branch starting
around �=0.5. In order to test that the inflexion is not due to
an unphysical bump in any of the three terms in Eq. �1�, we
decomposed the phonon energy of this branch into its com-
ponents from the bond, many-body repulsive and pairwise
terms �Fig. 9�. This decomposition demonstrates that the

FIG. 6. The tetragonal deformation path calculated using BOP
and first-principles methods. The structures at the special points on
the path are indicated.

FIG. 7. The trigonal deformation path calculated using BOP and
first-principles methods. The structures at the special points on the
path are indicated.
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contribution to the phonon energy from the bond term in-
creases more rapidly than the opposing contributions from
the pairwise and many-body repulsive terms. Hence, it is
likely that the atomic displacements associated with this pho-
non mode couple to the angular character of interatomic
bonding in iridium in a particularly strong manner, leading to
the observed anomalies.

The two degenerate transverse ����� branches are ob-
served to soften at around �=0.25. These phonon modes cor-
respond to a shearing of �111� planes in the fcc lattice paral-
lel to each other and so it is likely that this softening is
related to the bond part in the BOP favoring the hcp structure
over fcc. In spite of these relatively soft phonon branches,
the calculated phonon spectra never suggest that the fcc lat-
tice is unstable for some distortion of the lattice as none of
the branches are observed to approach zero frequency.

D. Stacking faults and vacancies

1. Stacking faults

Using the constructed BOP, we have calculated the ener-
gies of the intrinsic and extrinsic stacking faults, along with

the energy of the twin boundary. Blocks containing 156 at-
oms were used that were generated by stacking �111� planes
in the appropriate order to form the stacking fault. Periodic
boundary conditions were applied in the directions parallel to
the plane of the stacking fault and/or twin boundary. Perpen-
dicular to the plane of the fault, the block was divided into an
active region of width 18�3a centered on the plane of the
fault where atomistic relaxation was performed. The active
region was sandwiched by regions of thickness 4�3a where
the atoms were held fixed. This geometry of simulation cell
ensures that the energy of an isolated stacking fault and/or
twin boundary is calculated.

The agreement between the intrinsic stacking fault energy
calculated using the BOP, 408 mJ m−2, and experiment,
420 mJ m−2 �Ref. 40�, as well as with the range of values
calculated ab initio, 365 �Ref. 41�–445 �this work� mJ m−2,
is very good. However, such good agreement is expected
since the hcp-fcc structural energy difference is fitted during
the parametrization of the BOP. It is important that the in-
trinsic stacking fault energy that the BOP produces is in such
good agreement with experiment because of the role it plays
in determining the equilibrium width of splitting of a dislo-
cation into Shockley partials.1

We find the energies of the extrinsic stacking fault and
twin boundary to be 462 and 222 mJ m−2, respectively. There
are no experimental or ab initio calculated values to compare
with but the calculated energies do follow the expected
trends based on the numbers of �111� layers that are not in
perfect fcc registry, i.e., the energy of the twin boundary is
around one half of that of intrinsic stacking fault and the
energy of the extrinsic stacking fault is slightly higher than
that of the intrinsic stacking fault.1

2. Vacancy formation energy

The vacancy formation energy was calculated using su-
percells containing the vacancy at their center. The supercells
were relaxed atomistically until the force acting on any atom
was less than 0.01 eV Å−1. The vacancy formation
energy was then calculated according to the relation
Evac=Etot�N−1�− ��N−1� /N�Etot�N�63 where N is the total
number of atoms in the perfect supercell. In order to assure
the independence of the calculated vacancy formation energy
on block size, we gradually increased the size of the super-
cell until the vacancy formation energy was found not to
vary further. This occurred for N=864 and we found the
relaxed vacancy formation energy Evac

r =2.97 eV and the un-
relaxed vacancy formation energy Evac

u =3.42 eV. The ratio
Evac

u / �Ecoh � =0.49 is in excellent agreement with the simple
arguments, presented in Ref. 18 regarding the numbers of
broken and strengthened bonds that result from the formation
of the vacancy. On the other hand, Evac

r / �Ecoh � =0.43 is not in
good agreement with the results of ab initio calculations that
report Evac

r / �Ecoh � =0.27 and 0.33 �Refs. 63 and 41, respec-
tively�. The origin of the discrepancies between the relaxed
vacancy formation energy predicted by the BOP and those
predicted by first-principles calculations is not clear. It is
possible that owing to the relatively small numbers of atoms
that can be included in DFT calculations, the atomic relax-
ations differ significantly from those in the larger cells used

FIG. 8. The phonon spectra of iridium calculated using BOP by
the method of frozen phonons along three high symmetry directions
compared with experimental results �circles�.

FIG. 9. The energy of the ���0� T2 phonon branch decomposed
into the contributions from the bond, many-body repulsive, and
pairwise terms.
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in the BOP calculations, although higher energies would be
expected from DFT calculations since less relaxation is pos-
sible. Hence, it is more likely that the BOP is unable to
account for local changes in electronic structure around the
vacancy that are properly captured in DFT calculations.64

The inclusion of analytic screening functions for the bond
integrals may improve the predictions for the vacancy forma-
tion energy in iridium,24 assuming that the observed discrep-
ancies are electronic in origin.

V. APPLICATION OF BOP TO DISLOCATION CORE
STRUCTURES

We applied the constructed BOP to the atomistic simula-
tion of the core structure of the screw dislocation in iridium.
The simulation block consisted of a cylinder one Burgers
vector in height and of radius 60 Å. The axis of the cylinder

is parallel to the dislocation line, i.e., �11̄0�, and periodic
boundary conditions were applied in this direction. The
block was divided into three regions: a central region of ra-
dius 30 Å �region I� containing the elastic center of disloca-
tion within cylinders of thickness 12 Å �region II� and 18 Å
�region III�. The dislocation was introduced into to the center
of the block by displacing all atoms in accordance with the
corresponding strain field evaluated using anisotropic elastic-
ity. The positions of atoms in region I were relaxed atomis-
tically using the BOP until the force acting on any atom was
less than 0.01 eV Å−1. Atoms in the outer region of the block
�regions II and III� were held fixed at their initial positions
during the atomistic relaxation of region I. The incompatibil-
ity forces generated in region II during the atomistic relax-
ation of atoms in region I were used to update the positions
of all atoms using the Green’s function boundary condition
�GFBC� formalism.4,5,65–67 The use of the GFBC formalism
allowed us to update self-consistently the boundary regions
of the simulation block during atomistic relaxation of the
dislocation core via iterations of atomistic relaxation of re-
gion I followed by a GFBC update.

We found two possible configurations for the core of the

a /2�11̄0� screw dislocation in iridium; a planar core that is
spread only on the �111� plane, corresponding to dissociation
into Shockley partials, and a nonplanar core that is spread

onto the intersecting �111� and �111̄� planes of the �11̄0�
zone. In Fig. 10�a�, the planar core structure is presented as a
differential displacement map. The splitting between partials
is extremely narrow at around 12 Å. This value is consistent
with the HRTEM observations of Balk and Hemker.40 The
nonplanar configuration of the core of the screw dislocation
is presented in Fig. 10�b�. A comparison of the energies of
the dislocations with these two different cores3 showed that
the dislocation with the nonplanar core is metastable and is
higher in energy than the dislocation with the planar core by
0.33 eV b−1. Such a metastable nonplanar core configuration
has never previously been reported in atomistic simulations
of fcc metals and it is likely to be unique to iridium because
of the strong angular character of its interatomic bonding
which is captured accurately by the constructed BOP.

It has been shown in a recent paper �Ref. 3� that the
existence of a metastable nonplanar configuration for the

screw dislocation core may have a significant effect on the
mechanical properties of iridium. Stress driven transforma-
tions between the planar and nonplanar core configurations
may occur and the nonplanar core configuration serves as an
intermediate configuration for cross slip which then takes
place without thermal activation. Such athermal cross slip,
together with the high mobility of the dislocation with the
planar core, gives rise to an anomalously high density of
Frank-Read sources generated via the double cross slip
mechanism68 and leads subsequently to a dislocation density
that increases exponentially with plastic strain. When the dis-
location density in the material reaches the level at which the
mean free path of dislocations is comparable to the magni-
tude of their Burgers vector, further dislocation glide is ex-
tremely difficult, stress concentrators cannot be relaxed via
dislocation mediated plasticity and the material becomes
brittle. These mechanisms, which can be related directly to
the angular character of bonds in iridium, explain its unusual
mechanical behavior.

FIG. 10. Differential displacement maps of screw dislocation
cores in iridium. In these figures, the circles depict atoms in the

projection onto the plane perpendicular to the dislocation line �11̄0�
and the open and closed circles distinguish two planes of atoms
within one period. The arrows represent relative displacement par-
allel to the total Burgers vector between two neighboring atoms.
The length of the arrows is proportional to the magnitude of the
displacement normalized by a /2�2, where a is the fcc lattice pa-
rameter. �a� Planar core spread onto the �111� plane. �b� Nonplanar

core spread onto the intersecting �111� and �111̄� planes.
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VI. DISCUSSION AND CONCLUSIONS

Several semiempirical models for the description of inter-
atomic bonding in iridium have been developed. These range
from pair potentials, through the embedded atom method to
TB schemes. All of these methods do have their own
strengths and weaknesses, however, in this paper we have
demonstrated that the BOP we have developed is particularly
suitable for use in the atomistic simulation of extended de-
fects in iridium.

The EAM potential constructed by Chen8 provides a rea-
sonably good description of the equilibrium properties of fcc
iridium but this is achieved through the use of an unphysical
embedding function with negative curvature. This form of
embedding function cannot be justified on the basis of elec-
tronic theory of metals. Neither pair potentials nor the EAM
formalism describe the angular bonding that we have shown
to be so important in the case of fcc iridium. While the EAM
potential does provide accurate predictions for the vacancy
formation energy and the lattice parameter of hypothetical
bcc iridium, the bcc-fcc energy difference is only one third of
the value found by our ab initio calculations. The latter is
likely to be related to the neglect of angular bonding in the
potential.

A modified-embedded atom method �MEAM� potential
has been developed for iridium by van Beurden and
Kramer.69 This is an improvement over the pair potential and
EAM schemes since it includes the effects of angular bond-
ing in the embedding functions, albeit in an entirely empiri-
cal manner. While the MEAM formalism is significantly
more computationally efficient than the BOP, this is at the
expense of a significantly less rigorous relation to the fully
quantum-mechanical description of interatomic bonding pro-
vided by TB methods. The embedding functions used in the
MEAM, require fitting to more experimental or ab initio data
than is the case with BOP. Thus, while the MEAM does
provide a framework for the atomistic simulation of defects,
it is likely that its transferability is significantly less compre-
hensive than that of the BOP.

Mehl and Papaconstantopoulos70 have developed a TB
description of interatomic bonding in iridium which uses an
spd basis. As discussed in Sec. III A, such a scheme is likely
to be both accurate and transferable to at least the same ex-
tent as the BOP. However, it is not a real-space method and
so cannot be applied as straightforwardly as the BOP to
structures exhibiting reduced symmetry. Furthermore, this

TB scheme requires significantly more fitting parameters.
The BOP presented in this paper compares very favorably

with other widely used and well-established methods, rang-
ing from first-principles electronic structure calculations in
terms of accuracy and transferability to empirical potentials
in terms of their computational efficiency. First, it is fully
quantum mechanically based, real space, and has relatively
few adjustable parameters. It describes accurately the equi-
librium properties of fcc iridium, such as its elastic constants,
owing to the proper treatment of angular bonding and the
introduction of a many-body repulsive term in the expression
for the total energy. This potential also exhibits excellent
transferability to structures that differ significantly from the
fcc environment in both symmetry and coordination. This
has been demonstrated through the calculation of energy dif-
ferences between different structures as functions of atomic
volume along with the energetics of the tetragonal and trigo-
nal deformation paths. Most notably, the BOP yields excel-
lent predictions for the phonon spectra, including certain
anomalous features of the ���0� branches. While the con-
structed BOP is computationally intensive and not well
suited for very large-scale molecular dynamics or Monte
Carlo simulations, it is proficient for the atomistic simulation
of the structure and properties of crystalline defects, such as
straight dislocations and periodic grain boundaries that re-
quire not more than a few thousands of atoms in the relaxed
region. Indeed, we have demonstrated the efficacy of the
BOP in atomistic studies of the screw dislocation in iridium.
The planar core configuration for the screw dislocation was
in excellent agreement with experimental results40 and we
predicted that a metastable, nonplanar core configuration.
The results of these atomistic simulations allowed us to elu-
cidate a mechanism for athermal cross slip that is unique to
iridium and develop a model which accounts for the unusual
mechanical properties of this material.3

ACKNOWLEDGMENTS

This work was supported by the US Department of En-
ergy BES Grant No. DE-PG02-98ER45702 �M.J.C. and
V.V.� and the UK EPSRC and EURATOM �D.N.M.�. We are
grateful to C. Woodward, M. Mrovec, and M. Khantha for
their input during this work and to R. Heid and M. Sob for
providing tabulated data for the phonon spectra and deforma-
tion paths, respectively. Finally, D.N.M. would like to thank
R. A. Johnson for his communication about the newly con-
structed EAM potentials for iridium.

*Present address: Explosives and Organic Materials �T-14�, MS
B221, Theoretical Division, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545, USA. Electronic address:
cawkwell@lanl.gov

†Electronic address: duc.nguyen@ukaea.org.uk
‡Electronic address: vitek@lrsm.upenn.edu
1 J. P. Hirth and J. Lothe, Theory of Dislocations �Wiley-

Interscience, New York, 1982�.

2 Handbook of Materials Modeling, edited by S. Yip �Springer,
Berlin, 2005�.

3 M. J. Cawkwell, D. Nguyen-Manh, C. Woodward, D. G. Pettifor,
and V. Vitek, Science 309, 1059 �2005�.

4 C. Woodward and S. I. Rao, Phys. Rev. Lett. 88, 216402 �2002�.
5 C. Woodward and S. I. Rao, Philos. Mag. 84, 401 �2004�.
6 M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 �1984�.
7 M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 �1984�.

CAWKWELL, NGUYEN-MANH, PETTIFOR, AND VITEK PHYSICAL REVIEW B 73, 064104 �2006�

064104-12



8 S. P. Chen, Philos. Mag. A 66, 1 �1992�.
9 R. A. Johnson �private communication�.

10 R. E. MacFarlane, J. A. Rayne, and C. T. Jones, Phys. Lett. 20,
234 �1966�.

11 O. Y. Kontsevoi, Y. N. Gornostyrev, and A. J. Freeman, JOM 57,
43 �2005�.

12 D. Maurer, R. Heichele, N. Lingg, V. Muller, and K. H. Rieder,
Phys. Status Solidi A 160, 403 �1997�.

13 A. S. Ivanov, M. I. Katsnelson, A. G. Mikhin, Y. N. Osetskii, A.
Y. Rumyantsev, A. V. Trefilov, Y. F. Shammanaev, and L. I.
Yakovenkova, Philos. Mag. B 69, 1183 �1994�.

14 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 �1954�.
15 A. P. Sutton, M. W. Finnis, D. G. Pettifor, and Y. Ohta, J. Phys. C

21, 35 �1988�.
16 A. P. Sutton, Electronic Structure of Materials �Oxford University

Press, Oxford, 1993�.
17 A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materi-

als �Oxford University Press, Oxford, 1995�.
18 D. G. Pettifor, Bonding and Structure of Molecules and Solids

�Oxford University Press, Oxford, 1995�.
19 D. G. Pettifor, Phys. Rev. Lett. 63, 2480 �1989�.
20 A. P. Horsfield, A. M. Bratkovsky, M. Fearn, D. G. Pettifor, and

M. Aoki, Phys. Rev. B 53, 12694 �1996�.
21 M. Aoki, Phys. Rev. Lett. 71, 3842 �1993�.
22 A. Girshick, A. M. Bratkovsky, D. G. Pettifor, and V. Vitek,

Philos. Mag. A 77, 981 �1998�.
23 A. Girshick, D. G. Pettifor, and V. Vitek, Philos. Mag. A 77, 999

�1998�.
24 M. Mrovec, D. Nguyen-Manh, D. G. Pettifor, and V. Vitek, Phys.

Rev. B 69, 094115 �2004�.
25 S. Znam, D. Nguyen-Manh, D. G. Pettifor, and V. Vitek, Philos.

Mag. 83, 415 �2003�.
26 A. P. Horsfield, P. D. Godwin, D. G. Pettifor, and A. P. Sutton,

Phys. Rev. B 54, 15773 �1996�.
27 D. Nguyen-Manh, D. G. Pettifor, D. J. H. Cockayne, M. Mrovec,

S. Znam, and V. Vitek, Bull. Mater. Sci. 26, 43 �2003�.
28 D. Nguyen-Manh, D. G. Pettifor, S. Znam, and V. Vitek, in Tight-

Binding Approach to Computational Materials Science, edited
by P. E. A. Turchi, A. Gonis, and L. Colombo �Materials Re-
search Society, Warrendale, Boston, MA, 1998�, Vol. 491, p.
353.

29 M. W. Finnis, Interatomic Forces in Condensed Matter �Oxford
University Press, Oxford, 2003�.

30 R. P. Feynman, Phys. Rev. 56, 340 �1939�.
31 A. P. Sutton, T. N. Todorov, M. J. Cawkwell, and J. Hoekstra,

Philos. Mag. A 81, 1833 �2001�.
32 C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 �1950�.
33 A. P. Horsfield and A. M. Bratkovsky, Phys. Rev. B 53, 15381

�1996�.
34 J. Friedel, in The Physics of Metals, edited by J. M. Ziman �Cam-

bridge University Press, New York, 1969�, p. 494.
35 A. T. Paxton, J. Phys. D 29, 1689 �1996�.
36 O. K. Andersen, Phys. Rev. B 12, 3060 �1975�.
37 D. G. Pettifor, Commun. Phys. �London� 1, 141 �1976�.
38 D. G. Pettifor, J. Chem. Phys. 69, 2930 �1978�.
39 H. L. Skriver, Phys. Rev. B 31, 1909 �1985�.

40 T. J. Balk and K. J. Hemker, Philos. Mag. A 81, 1507 �2001�.
41 Y. N. Gornostyrev, M. I. Katsnelson, N. I. Medvedeva, O. N.

Mryasov, A. J. Freeman, and A. V. Trefilov, Phys. Rev. B 62,
7802 �2000�.

42 N. M. Rosengaard and H. L. Skriver, Phys. Rev. B 47, 12865
�1993�.

43 L. Goodwin, A. J. Skinner, and D. G. Pettifor, Europhys. Lett. 9,
701 �1989�.

44 M. Nastar and F. Willaime, Phys. Rev. B 51, 6896 �1995�.
45 D. G. Pettifor, J. Phys. F: Met. Phys. 8, 219 �1978�.
46 L. B. Hunt, Platinum Met. Rev. 31, 32 �1987�.
47 C. Kittel, Introduction to Solid State Physics �Wiley, New York,

1996�.
48 E. Sjöstedt, L. Nordström, and D. J. Singh, Solid State Commun.

114, 15 �2000�.
49 G. K. H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, and L. Nor-

dström, Phys. Rev. B 64, 195134 �2001�.
50 P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J.

Luitz, WIEN2k, An Augmented Plane Wave � Local Orbitals Pro-
gram for Calculating Crystal Properties �Karlheinz Schwarz,
Technische Universität Wien, Austria, 2001�.

51 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 �1996�.

52 J. Kübler, Theory of Itinerant Electron Magnetism �Oxford Uni-
versity Press, New York, 2000�.

53 D. Nguyen-Manh, D. G. Pettifor, and V. Vitek, Phys. Rev. Lett.
85, 4136 �2000�.

54 M. Mrovec, Ph.D. Thesis, University of Pennsylvania, 2002.
55 H. Haas, C. Z. Wang, M. Fähnle, C. Elsässer, and K. M. Ho,

Phys. Rev. B 57, 1461 �1998�.
56 J. H. Rose, J. R. Smith, and J. Ferrante, Phys. Rev. B 28, 1835

�1983�.
57 J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B

29, 2963 �1984�.
58 V. Paidar, L. G. Wang, M. Sob, and V. Vitek, Modell. Simul.

Mater. Sci. Eng. 7, 369 �1999�.
59 M. Sob, L. G. Wang, and V. Vitek, Comput. Mater. Sci. 8, 100

�1997�.
60 R. Heid, K. P. Bohnen, K. Felix, K. M. Ho, and W. Reichardt, J.

Phys.: Condens. Matter 10, 7967 �1998�.
61 P. K. Lam and M. L. Cohen, Phys. Rev. B 25, 6139 �1982�.
62 R. Heid �private communication�.
63 P. A. Korzhavyi, I. A. Abrikosov, B. Johansson, A. V. Ruban, and

H. L. Skriver, Phys. Rev. B 59, 11693 �1999�.
64 G. Jacucci, R. Taylor, A. Tenenbaum, and N. van Doan, J. Phys.

F: Met. Phys. 11, 793 �1981�.
65 J. E. Sinclair, P. C. Gehlen, R. G. Hoagland, and J. P. Hirth, J.

Appl. Phys. 49, 3890 �1978�.
66 S. Rao, C. Hernandez, J. P. Simmons, T. A. Parthasarathy, and C.

Woodward, Philos. Mag. A 77, 231 �1998�.
67 C. Woodward and S. I. Rao, Philos. Mag. A 81, 1305 �2001�.
68 J. S. Koehler, Phys. Rev. 86, 52 �1952�.
69 P. van Beurden and G. J. Kramer, Phys. Rev. B 63, 165106

�2001�.
70 M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 54,

4519 �1996�.

CONSTRUCTION, ASSESSMENT AND APPLICATION… PHYSICAL REVIEW B 73, 064104 �2006�

064104-13


	University of Pennsylvania
	ScholarlyCommons
	February 2006

	Construction, assessment, and application of a bond-order potential for iridium
	Marc J. Cawkwell
	Duc Nguyen-Manh
	David G. Pettifor
	Vaclav Vitek
	Recommended Citation

	Construction, assessment, and application of a bond-order potential for iridium
	Abstract
	Comments


	tmp.1151087186.pdf.khMxV

