234 research outputs found

    Improved cross-validation for classifiers that make algorithmic choices to minimise runtime without compromising output correctness

    Get PDF
    Our topic is the use of machine learning to improve software by making choices which do not compromise the correctness of the output, but do affect the time taken to produce such output. We are particularly concerned with computer algebra systems (CASs), and in particular, our experiments are for selecting the variable ordering to use when performing a cylindrical algebraic decomposition of nn-dimensional real space with respect to the signs of a set of polynomials. In our prior work we explored the different ML models that could be used, and how to identify suitable features of the input polynomials. In the present paper we both repeat our prior experiments on problems which have more variables (and thus exponentially more possible orderings), and examine the metric which our ML classifiers targets. The natural metric is computational runtime, with classifiers trained to pick the ordering which minimises this. However, this leads to the situation were models do not distinguish between any of the non-optimal orderings, whose runtimes may still vary dramatically. In this paper we investigate a modification to the cross-validation algorithms of the classifiers so that they do distinguish these cases, leading to improved results.Comment: 16 pages. Accepted into the Proceedings of MACIS 2019. arXiv admin note: text overlap with arXiv:1906.0145

    Acute posthypoxic myoclonus after cardiopulmonary resuscitation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute posthypoxic myoclonus (PHM) can occur in patients admitted after cardiopulmonary resuscitation (CPR) and is considered to have a poor prognosis. The origin can be cortical and/or subcortical and this might be an important determinant for treatment options and prognosis. The aim of the study was to investigate whether acute PHM originates from cortical or subcortical structures, using somatosensory evoked potential (SEP) and electroencephalogram (EEG).</p> <p>Methods</p> <p>Patients with acute PHM (focal myoclonus or status myoclonus) within 72 hours after CPR were retrospectively selected from a multicenter cohort study. All patients were treated with hypothermia. Criteria for cortical origin of the myoclonus were: giant SEP potentials; or epileptic activity, status epilepticus, or generalized periodic discharges on the EEG (no back-averaging was used). Good outcome was defined as good recovery or moderate disability after 6 months.</p> <p>Results</p> <p>Acute PHM was reported in 79/391 patients (20%). SEPs were available in 51/79 patients and in 27 of them (53%) N20 potentials were present. Giant potentials were seen in 3 patients. EEGs were available in 36/79 patients with 23/36 (64%) patients fulfilling criteria for a cortical origin. Nine patients (12%) had a good outcome. A broad variety of drugs was used for treatment.</p> <p>Conclusions</p> <p>The results of this study show that acute PHM originates from subcortical, as well as cortical structures. Outcome of patients admitted after CPR who develop acute PHM in this cohort was better than previously reported in literature. The broad variety of drugs used for treatment shows the existing uncertainty about optimal treatment.</p

    A Novel Function of DELTA-NOTCH Signalling Mediates the Transition from Proliferation to Neurogenesis in Neural Progenitor Cells

    Get PDF
    A complete account of the whole developmental process of neurogenesis involves understanding a number of complex underlying molecular processes. Among them, those that govern the crucial transition from proliferative (self-replicating) to neurogenic neural progenitor (NP) cells remain largely unknown. Due to its sequential rostro-caudal gradients of proliferation and neurogenesis, the prospective spinal cord of the chick embryo is a good experimental system to study this issue. We report that the NOTCH ligand DELTA-1 is expressed in scattered cycling NP cells in the prospective chick spinal cord preceding the onset of neurogenesis. These Delta-1-expressing progenitors are placed in between the proliferating caudal neural plate (stem zone) and the rostral neurogenic zone (NZ) where neurons are born. Thus, these Delta-1-expressing progenitors define a proliferation to neurogenesis transition zone (PNTZ). Gain and loss of function experiments carried by electroporation demonstrate that the expression of Delta-1 in individual progenitors of the PNTZ is necessary and sufficient to induce neuronal generation. The activation of NOTCH signalling by DELTA-1 in the adjacent progenitors inhibits neurogenesis and is required to maintain proliferation. However, rather than inducing cell cycle exit and neuronal differentiation by a typical lateral inhibition mechanism as in the NZ, DELTA-1/NOTCH signalling functions in a distinct manner in the PNTZ. Thus, the inhibition of NOTCH signalling arrests proliferation but it is not sufficient to elicit neuronal differentiation. Moreover, after the expression of Delta-1 PNTZ NP continue cycling and induce the expression of Tis21, a gene that is upregulated in neurogenic progenitors, before generating neurons. Together, these experiments unravel a novel function of DELTA–NOTCH signalling that regulates the transition from proliferation to neurogenesis in NP cells. We hypothesize that this novel function is evolutionary conserved

    Long-term air pollution exposure, genome-wide DNA methylation and lung function in the lifelines cohort study

    Get PDF
    BACKGROUND: Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not fully clear. Differential DNA methylation may explain this association. OBJECTIVES: Our main aim was to study the association between long-term air pollution exposure and DNA methylation. METHODS: We performed a genome-wide methylation study using robust linear regression models in 1,017 subjects from the LifeLines cohort study to analyze the association between exposure to nitrogen dioxide (NO2) and particulate matter (PM2.5, fine particulate ma

    Landmarking the brain for geometric morphometric analysis: An error study

    Get PDF
    Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype. To date, approximately fifty landmarks have been used to study brain shape. Of the studies that have used landmark-based statistical shape analysis of the brain, most have not published protocols for landmark identification or the results of reliability studies on these landmarks. The primary aims of this study were two-fold: (1) to collaboratively develop detailed data collection protocols for a set of brain landmarks, and (2) to complete an intra- and inter-observer validation study of the set of landmarks. Detailed protocols were developed for 29 cortical and subcortical landmarks using a sample of 10 boys aged 12 years old. Average intra-observer error for the final set of landmarks was 1.9 mm with a range of 0.72 mm-5.6 mm. Average inter-observer error was 1.1 mm with a range of 0.40 mm-3.4 mm. This study successfully establishes landmark protocols with a minimal level of error that can be used by other researchers in the assessment of neuroanatomic phenotypes. © 2014 Chollet et al

    Comparing machine learning models to choose the variable ordering for cylindrical algebraic decomposition

    Get PDF
    There has been recent interest in the use of machine learning (ML) approaches within mathematical software to make choices that impact on the computing performance without affecting the mathematical correctness of the result. We address the problem of selecting the variable ordering for cylindrical algebraic decomposition (CAD), an important algorithm in Symbolic Computation. Prior work to apply ML on this problem implemented a Support Vector Machine (SVM) to select between three existing human-made heuristics, which did better than anyone heuristic alone. The present work extends to have ML select the variable ordering directly, and to try a wider variety of ML techniques. We experimented with the NLSAT dataset and the Regular Chains Library CAD function for Maple 2018. For each problem, the variable ordering leading to the shortest computing time was selected as the target class for ML. Features were generated from the polynomial input and used to train the following ML models: k-nearest neighbours (KNN) classifier, multi-layer perceptron (MLP), decision tree (DT) and SVM, as implemented in the Python scikit-learn package. We also compared these with the two leading human constructed heuristics for the problem: Brown's heuristic and sotd. On this dataset all of the ML approaches outperformed the human made heuristics, some by a large margin.Comment: Accepted into CICM 201
    corecore