351 research outputs found

    A Short-Range FMCW Radar-Based Approach for Multi-Target Human-Vehicle Detection

    Get PDF
    In this article, a new microwave-radar-based technique for short-range detection and classification of multiple human and vehicle targets crossing a monitored area is proposed. This approach, which can find applications in both security and infrastructure surveillance, relies upon the processing of the scattered-field data acquired by low-cost off-The-shelf components, i.e., a 24 GHz frequency-modulated continuous wave (FMCW) radar module and a Raspberry Pi mini-PC. The developed method is based on an ad hoc processing chain to accomplish the automatic target recognition (ATR) task, which consists of blocks performing clutter and leakage removal with an infinite impulse response (IIR) filter, clustering with a density-based spatial clustering of applications with noise (DBSCAN) approach, tracking using a Benedict-Bordner alphaalpha -etaeta filter, features extraction, and finally classification of targets by means of a kk-nearest neighbor ( kk-NN) algorithm. The approach is validated in real experimental scenarios, showing its capabilities in correctly detecting multiple targets belonging to different classes (i.e., pedestrians, cars, motorcycles, and trucks)

    Band inversion driven by electronic correlations at the (111) LaAlO3_3/SrTiO3_3 interface

    Get PDF
    Quantum confinement at complex oxide interfaces establishes an intricate hierarchy of the strongly correlated dd-orbitals which is widely recognized as a source of emergent physics. The most prominent example is the (001) LaAlO3_3/SrTiO3_3(LAO/STO) interface, which features a dome-shaped phase diagram of superconducting critical temperature and spin-orbit coupling (SOC) as a function of electrostatic doping, arising from a selective occupancy of t2gt_{2g} orbitals of different character. Here we study (111)-oriented LAO/STO interfaces - where the three t2gt_{2g} orbitals contribute equally to the sub-band states caused by confinement - and investigate the impact of this unique feature on electronic transport. We show that transport occurs through two sets of electron-like sub-bands, and the carrier density of one of the sets shows a non-monotonic dependence on the sample conductance. Using tight-binding modeling, we demonstrate that this behavior stems from a band inversion driven by on-site Coulomb interactions. The balanced contribution of all t2gt_{2g} orbitals to electronic transport is shown to result in strong SOC with reduced electrostatic modulation.Comment: 5 pages, 4 figures, (+ supplemental material

    Tunable Rashba spin-orbit interaction at oxide interfaces

    Full text link
    The quasi-two-dimensional electron gas found at the LaAlO3/SrTiO3 interface offers exciting new functionalities, such as tunable superconductivity, and has been proposed as a new nanoelectronics fabrication platform. Here we lay out a new example of an electronic property arising from the interfacial breaking of inversion symmetry, namely a large Rashba spin-orbit interaction, whose magnitude can be modulated by the application of an external electric field. By means of magnetotransport experiments we explore the evolution of the spin-orbit coupling across the phase diagram of the system. We uncover a steep rise in Rashba interaction occurring around the doping level where a quantum critical point separates the insulating and superconducting ground states of the system

    Seebeck effect in the conducting LaAlO_{3}/SrTiO_{3} interface

    Full text link
    The observation of metallic behavior at the interface between insulating oxides has triggered worldwide efforts to shed light on the physics of these systems and clarify some still open issues, among which the dimensional character of the conducting system. In order to address this issue, we measure electrical transport (Seebeck effect, Hall effect and conductivity) in LaAlO_{3}/SrTiO_{3} interfaces and, for comparison, in a doped SrTiO_{3} bulk single crystal. In these experiments, the carrier concentration is tuned, using the field effect in a back gate geometry. The combined analysis of all experimental data at 77 K indicates that the thickness of the conducting layer is ~7 nm and that the Seebeck effect data are well described by a two-dimensional (2D) density of states. We find that the back gate voltage is effective in varying not only the charge density, but also the thickness of the conducting layer, which is found to change by a factor of ~2, using an electric field between -4 and +4MV/m at 77K. No enhancement of the Seebeck effect due to the electronic confinement and no evidence for two-dimensional quantization steps are observed at the interfaces.Comment: 15 pages, 5 figure

    Two-dimensional superconductivity at the (111)LaAlO3_3/SrTiO3_3 interface

    Full text link
    We report on the discovery and transport study of the superconducting ground state present at the (111)LaAlO3_3/SrTiO3_3 interface. The superconducting transition is consistent with a Berezinskii-Kosterlitz-Thouless transition and its 2D nature is further corroborated by the anisotropy of the critical magnetic field, as calculated by Tinkham. The estimated superconducting layer thickness and coherence length are 10 nm and 60 nm, respectively. The results of this work provide a new platform to clarify the microscopic details of superconductivity at LaAlO3_3/SrTiO3_3 interfaces, in particular in what concerns the link with orbital symmetry.Comment: 4 pages, 4 figure

    Superconductivity at the LaAlO3/SrTiO3interface

    Get PDF
    We report on the structural characterization of LaAlO3/SrTiO3 interfaces and on their transport properties. LaAlO3 films were prepared using pulsed laser deposition onto TiO2 terminated (001) SrTiO3 substrates inducing a metallic conduction at the interface. Resistance and Hall effect measurements reveal a sheet carrier density between 0.4 and 1.2·10 14 electrons/cm 2 at room temperature and mobility of ∼ 300 cm 2 V −1 s −1 at low temperatures. A transition to a superconducting state is observed at a temperature of ∼ 200 mK. The superconducting characteristics display signatures of 2D superconductivity

    MSWI Fly Ash Multiple Washing: Kinetics of Dissolution in Water, as Function of Time, Temperature and Dilution

    Get PDF
    Municipal solid waste incineration fly ash (FA) can represent a sustainable supply of supplementary material to the construction industries if it is pre-treated to remove hazardous substances such as chloride, sulfate, and heavy metals. In this paper, the phenomenology associated with a water washing multi-cycle treatment of FA is investigated, focusing attention upon the mineral dissolution process. The efficacy of the treatment is assessed by leaching tests, according to the European Standard, and discussed in light of the occurring mineral phases. The water-to-solid (L/S) ratio is a crucial parameter, along with the number of washing cycles, for removing halite and sylvite, whereas quartz, calcite, anhydrite, and an amorphous phase remain in the solid residue. The sequential extraction method and dissolution kinetics modelling provide further elements to interpret leaching processes, and suggest that dissolution takes place through a two-step mechanism. Altogether, multi-step washing with L/S = 5 is effective in reducing contaminants under the legal limits for non-hazardous waste disposal, while the legal limits for non-reactive or reusable material cannot be completely reached, owing to sulfate and some heavy metals which still leached out from the residue

    Diodes with Breakdown Voltages Enhanced by the Metal-Insulator Transition of LaAlO3_3-SrTiO3_3 Interfaces

    Full text link
    Using the metal-insulator transition that takes place as a function of carrier density at the LaAlO3_3-SrTiO3_3 interface, oxide diodes have been fabricated with room-temperature breakdown voltages of up to 200 V. With applied voltage, the capacitance of the diodes changes by a factor of 150. The diodes are robust and operate at temperatures up to 270 C

    Electrostatically tuned quantum superconductor-metal-insulator transition at the LaAlO3/SrTiO3 interface

    Full text link
    Recently superconductivity at the interface between the insulators LaAlO3 and SrTiO3 has been tuned with the electric field effect to an unprecedented range of transition temperatures. Here we perform a detailed finite size scaling analysis to explore the compatibility of the phase transition line with Berezinskii-Kosterlitz-Thouless (BKT) behavior and a 2D-quantum phase(QP)-transition. In an intermediate regime, limited by a gate voltage dependent limiting length, we uncover remarkable consistency with a BKT-critical line ending at a metallic quantum critical point, separating a weakly localized insulator from the superconducting phase. Our estimates for the critical exponents of the 2D-QP-transition, z=1 and nu=0.66, suggest that it belongs to the 3D-xy universality class.Comment: 10 pages, 10 figure
    • …
    corecore