19 research outputs found

    Facilitation among plants in alpine environments in the face of climate change

    Get PDF
    While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change

    Plant invasions into mountains and alpine ecosystems: current status and future challenges.

    No full text
    Recent years have seen a surge of interest in understanding patterns and processes of plant invasions into mountains. Here, we synthesise current knowledge about the spread of non-native plants along elevation gradients, emphasising the current status and impacts that these species have in alpine ecosystems. Globally, invasions along elevation gradients are influenced by propagule availability, environmental constraints on population growth, evolutionary change and biotic interactions. The highest elevations are so far relatively free from non-native plants. Nonetheless, in total nearly 200 non-native plant species have been recorded from alpine environments around the world. However, we identified only three species as specifically cold-adapted, with the overwhelming majority having their centres of distribution under warmer environments, and few have substantial impacts on native communities. A combination of low propagule availability and low invasibility likely explain why alpine environments host few non-native plants relative to lowland ecosystems. However, experiences in some areas demonstrate that alpine ecosystems are not inherently resistant to invasions. Furthermore, they will face increasing pressure from the introduction of pre-adapted species, climate change, and the range expansion of native species, which are already causing concern in some areas. Nonetheless, because they are still relatively free from non-native plants, preventative action could be an effective way to limit future impacts of invasions in alpine environments

    Mountain roads and non-native species modify elevational patterns of plant diversity

    Get PDF
    Aim: We investigated patterns of species richness and community dissimilarity along elevation gradients using globally replicated, standardized surveys of vascular plants. We asked how these patterns of diversity are influenced by anthropogenic pressures (road construction and non-native species). Location: Global. Time period: 2008-2015. Major taxa studied: Vascular plants. Methods: Native and non-native vascular plant species were recorded in 943 plots along 25 elevation gradients, in nine mountain regions, on four continents. Sampling took place in plots along and away from roads. We analysed the effects of elevation and distance from road on species richness patterns and community dissimilarity (beta-diversity), and assessed how non-native species modified such elevational diversity patterns. Results: Globally, native and total species richness showed a unimodal relationship with elevation that peaked at lower-mid elevations, but these patterns were altered along roads and due to non-native species. Differences in elevational species richness patterns between regions disappeared along roadsides, and non-native species changed the patterns' character in all study regions. Community dissimilarity was reduced along roadsides and through non-native species. We also found a significant elevational decay of beta-diversity, which however was not affected by roads or non-native species. Main conclusions: Idiosyncratic native species richness patterns in plots away from roads implicate region-specific mechanisms underlying these patterns. However, along roadsides a clearer elevational signal emerged and species richness mostly peaked at mid-elevations. We conclude that both roads and non-native species lead to a homogenization of species richness patterns and plant communities in mountains

    Mountain roads shift native and non-native plant species ranges

    Get PDF
    Roads are known to act as corridors for dispersal of plant species. With their variable microclimate, role as corridors for species movement and reoccurring disturbance events, they show several characteristics that might influence range dynamics of both native and non-native species. Previous research on plant species ranges in mountains however seldom included the effects of roads. To study how ranges of native and non-native species differ between roads and adjacent vegetation, we used a global dataset of plant species composition along mountain roads. We compared average elevation and range width of species, and used generalized linear mixed models (GLMMs) to compile their range optimum and amplitude. We then explored differences between roadside and adjacent plots based on a species? origin (native vs non-native) and nitrogen and temperature affinity. Most non-native species had on average higher elevational ranges and broader amplitudes in roadsides. Higher optima for non-native species were associated with high nitrogen and temperature affinity. While lowland native species showed patterns comparable to those in non-native species, highland native species had significantly lower elevational ranges in roadsides compared to the adjacent vegetation. We conclude that roadsides indeed change the elevational ranges of a variety of species. These changes are not limited to the expansion of non-native species along mountain roads, but also include both upward and downward changes in ranges of native species. Roadsides may thus facilitate upward range shifts, for instance related to climate change, and they could serve as corridors to facilitate migration of alpine species between adjacent high-elevation areas. We recommend including the effects of mountain roads in species distribution models to fine-tune the predictions of range changes in a warming climate.Fil: Lembrechts, Jonas. Universiteit Antwerp; BélgicaFil: Alexander, Jake. Swiss Federal Institute of Technology Zurich; SuizaFil: Cavieres, Lohengrin. Universidad de Concepción; ChileFil: Haider, Sylvia. Martin-Luther Universität Halle-Wittenberg; Alemania. German Centre For Integrative Biodiversity Research.; AlemaniaFil: Lenoir, Jonathan. Université de Picardie Jules Verne; FranciaFil: Kueffer, Christoph. Swiss Federal Institute of Technology Zurich; SuizaFil: McDougall, Keith. La Trobe University; AustraliaFil: Naylor, Bridgett. United States Department of Agriculture; Estados UnidosFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Pauchard, Aníbal. Universidad de Concepción; ChileFil: Rew, Lisa. State University of Montana; Estados UnidosFil: Nijs, Ivan. Universiteit Antwerp; BélgicaFil: Milbau, Ann. Universidad de Umea; Suecia. Research Institute for Nature and Forest; Bélgic
    corecore