292 research outputs found
Design and performance of a fixed, nonaccelerating, guide vane cascade that operates over an inlet flow angle range of 60 deg
A unique set of wind tunnel guide vanes are designed with an inverse design code and analyzed with a panel method and an integral boundary layer code developed at the NASA Lewis Research Center. The fixed guide vanes, 80 feet long with 6-foot chord length, were designed for the NASA Ames 40 x 80/80 x 120 ft Wind Tunnel. Low subsonic flow is accepted over a 60 deg range of inlet angle from either the 40 x 80 leg or the 80 x 120 leg of the wind tunnel, and directed axially into the main leg of the tunnel where drive fans are located. Experimental tests of 1/10-scale models were conducted to verify design calculations
Genetic effects of static magnetic fields. Body size increase and lethal mutations induced in populations of Drosophila melanogaster after chronic exposure
International audienc
Evaluation of the single jet flow rate for a multi-hole GDI nozzle
Fuel injectors featuring differentiated hole-to-hole dimensions improve the fuel distribution in the cylinder ensuring a more efficient and cleaner combustion for GDI (Gasoline Direct Injection) engines. A proper diagnostic system able to detect the actual fuel flow rate exiting each hole of a GDI nozzle is requested in order to optimize the matching between the spray and the combustion chamber. Measuring the spray impact force of a single plume allows the detection of the momentum flux exiting the single hole and, under appropriate hypotheses, the evaluation of the corresponding mass flow rate time-profile. In this paper two methodologies for the hole-specific flow rate evaluation, both based on the spray momentum technique, were applied to two different GDI nozzles, one featuring equal hole dimensions and one with two larger holes. Three different energizing times at 100 bar of fuel pressure were tested in order to cover a wide range of operating conditions. The results were validated in terms of injected mass by means of a proper device able to collect and weigh the fuel injected by each single nozzle hole, and in terms of mass flow rate using a Zeuch-method flow meter as reference. Both the proposed methodologies showed an excellent accuracy in the fuel amount detection with percentage error lower than 5% for standard energizing times and lower than 10% for very short injections working in ballistic conditions. The mass flow rate time-profile proved a good accuracy in the detection of the start and end of injection and the static flow rate level
The tumor suppressor gene fat modulates the EGFR-mediated proliferation control in the imaginal tissues of Drosophila melanogaster
Molecules involved in cell adhesion can regulate both early signal transduction events, triggered by soluble factors, and downstream events involved in cell cycle progression. Correct integration of these signals allows appropriate cellular growth, differentiation and ultimately tissue morphogenesis, but incorrect interpretation contributes to pathologies such as tumor growth. The Fat cadherin is a tumor suppressor protein required in Drosophila for epithelial morphogenesis, proliferation control and epithelial planar polarization, and its loss results in a hyperplastic growth of imaginal tissues. While several molecular events have been characterized through which fat participates in the establishment of the epithelial planar polarity, little is known about mechanisms underlying fat-mediated control of cell proliferation. Here we provide evidence that fat specifically cooperates with the epidermal growth factor receptor (EGFR) pathway in controlling cell proliferation in developing imaginal epithelia. Hyperplastic larval and adult fat structures indeed undergo an amazing, synergistic enlargement following to EGFR oversignalling. We further show that such a strong functional interaction occurs downstream of MAPK activation through the transcriptional regulation of genes involved in the EGFR nuclear signalling. Considering that fat mutation shows di per se a hyperplastic phenotype, we suggest a model in which fat acts in parallel to EGFR pathway in transducing different cell communication signals: furthermore its function is requested downstream of MAPK for a correct rendering of the growth signals converging to the epidermal growth factor receptor. (C) 2004 Elsevier Ireland Ltd. All rights reserved
Clinical and Genotypical Features of False-Negative Patients in 26 Years of Cystic Fibrosis Neonatal Screening in Tuscany, Italy.
Cystic fibrosis (CF) is a life-threatening and common genetic disorder. Cystic fibrosis newborn screening (CF NBS) has been implemented in many countries over the last 30 years, becoming a widely accepted public health strategy in economically developed countries. False-negative (FN) cases can occur after CF NBS, with the number depending on the method. We evaluated the delayed diagnosis of CF, identifying the patients who had false-negative CF NBS results over 26 years (1992-2018) in Tuscany, Italy. The introduction of DNA analysis to the newborn screening protocol improved the sensitivity of the test and reduced the FNs. Our experience showed that, overall, at least 8.7% of cases of CF received FNs (18 cases) and were diagnosed later, with an average age of 6.6 years (range: 4 months to 22 years). Respiratory symptoms and salt-loss syndrome (metabolic hypochloremic alkalosis) are suggestive symptoms of CF and were commons events in FN patients. In Tuscany, a region with a high CFTR allelic heterogeneity, the salt-loss syndrome was a common event in FNs. Therefore, we provided evidence to support the claim that the FN patients had CFTR mutations rarer compared with the true-positive cases. We underline the importance of vigilance toward clinical manifestations suggestive of CF on the part of the primary care providers and hospital physicians in a region with an efficient newborn screening program
Impact of 18F-FDG PET/CT on Clinical Management of Suspected Radio-Iodine Refractory Differentiated Thyroid Cancer (RAI-R-DTC).
Background: As reported in the literature, [18F]-fluorodeoxyglucose positron emission tomography/computed tomography ([18F]-FDG PET/CT) provides useful qualitative and semi-quantitative data for the prognosis of advanced differentiated thyroid cancer. Instead, there is a lack of data about the real clinical impact of 18F-FDG PET/CT on the choice of the more effective therapeutic approach for advanced differentiated thyroid cancer (DTC) that starts to lose iodine avidity. The primary aim of this retrospective study was to assess how 18F-FDG PET/CT can guide the choice of the best therapeutic approach to RAI-refractory DTC (RAI-R-DTC) in patients with a doubtful iodine uptake/negative 18F-FDG PET/CT I whole-body scan after several radioactive iodine therapies (RAIT). The secondary aim was to assess the prognostic role of clinical and semi-quantitative metabolic 18F-FDG PET/CT parameters in comparison to published data.
Materials and methods: A monocentric retrospective observational study was performed, reviewing the medical records of 53 patients recruited from a database of 208 patients treated at our Institution between 2011 and 2019, with advanced DTC that underwent FDG PET/CT scan for a suspected RAI-R-DTC. Selected patients had to perform a 18F-FDG PET/CT scan after the second RAIT based on a doubtful iodine uptake/negative 131 I whole-body scan and/or persistent elevated thyroglobulin levels. Metabolic response was defined according to positron emission tomography response criteria in solid tumors (PERCIST) guidelines. Standardized uptake value (SUV)max, SUVmean, metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were calculated. The association between metabolic features, clinical parameters and progression free survival (PFS) was assessed applying Kruskal-Wallis, chi-square-Pearson correlation tests, and Cox regression analyses when appropriate.
Results: Among our sample of 53 patients (mean age 52.0 ± 19.9 years; 31 women and 22 men), 27 (51.0%) presented a positive 18F-FDG PET/CT scan: 16 (59.0%) underwent watchful waiting, 4 (15.0%) received external-beam radiation therapy (EBRT), 4 (15.0%) underwent surgery, 2 (7.4%) received another course of RAI therapy, and 1 underwent surgery + EBRT. PERCIST response was evaluated in 14/27 patients. Median follow-up was 5.8 ± 3.9 years and median PFS was 38.0 ± 21.8 months. At the last follow-up assessment, 14/53 (26.4%) demonstrated disease progression, 13/53 (24.5) persistence of structural disease, 25/53 (47%) persistence of biochemical disease, and 15/53 (28%) had an excellent response. A significant association was found between therapeutic approach, metabolic response, and final disease response evaluation, as well as a linear correlation between MTV and TLG with thyroglobulin level.
Conclusions: Our Institutional experience confirmed the role of 18F-FDG PET/CT as a useful guide in the clinical management of RAI-R-DTC and obviated further unnecessary RAIT
Light--like Wilson loops and gauge invariance of Yang--Mills theory in 1+1 dimensions
A light-like Wilson loop is computed in perturbation theory up to for pure Yang--Mills theory in 1+1 dimensions, using Feynman and
light--cone gauges to check its gauge invariance. After dimensional
regularization in intermediate steps, a finite gauge invariant result is
obtained, which however does not exhibit abelian exponentiation. Our result is
at variance with the common belief that pure Yang--Mills theory is free in 1+1
dimensions, apart perhaps from topological effects.Comment: 10 pages, plain TeX, DFPD 94/TH/
Dynamics of Electric Field Domains and Oscillations of the Photocurrent in a Simple Superlattice Model
A discrete model is introduced to account for the time-periodic oscillations
of the photocurrent in a superlattice observed by Kwok et al, in an undoped 40
period AlAs/GaAs superlattice. Basic ingredients are an effective negative
differential resistance due to the sequential resonant tunneling of the
photoexcited carriers through the potential barriers, and a rate equation for
the holes that incorporates photogeneration and recombination. The
photoexciting laser acts as a damping factor ending the oscillations when its
power is large enough. The model explains: (i) the known oscillatory static I-V
characteristic curve through the formation of a domain wall connecting high and
low electric field domains, and (ii) the photocurrent and photoluminescence
time-dependent oscillations after the domain wall is formed. In our model, they
arise from the combined motion of the wall and the shift of the values of the
electric field at the domains. Up to a certain value of the photoexcitation,
the non-uniform field profile with two domains turns out to be metastable:
after the photocurrent oscillations have ceased, the field profile slowly
relaxes toward the uniform stationary solution (which is reached on a much
longer time scale). Multiple stability of stationary states and hysteresis are
also found. An interpretation of the oscillations in the photoluminescence
spectrum is also given.Comment: 34 pages, REVTeX 3.0, 10 figures upon request, MA/UC3M/07/9
Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate
Tomato peels and seeds (TP) are the most abundant canning industry waste actually used to produce biogas. TP is rich in lycopene (lyc) and represent a more sustainable feedstock than tomato fruits actually employed. It was therefore chosen as feedstock together with supercritical CO2 extraction (SFE-CO2) technology to develop a TP-SFE-CO2 biorefinery, topic scarcely investigated. Two TP were tested and although TP-SFE-CO2 parameters were the same, lyc recoveries depended by peel structure changes occurred during pre -SFE-CO2 drying step. Higher moisture (102.7 g kg-1 wet weight) permitted 97 % lyc recovery and gave a water-in-oil emulsion as extract. Mass balance confirmed that lyc isomerisation did not cause lyc losses. After a significant oil extraction, exhaust TP showed a biodegradability 64% higher than the raw one, attributable to fibre structure disruption. The biorefinery proposed (SFE_CO2+anaerobic digestion) determined positive economic revenue (+787.9 \u20ac t-1 TP) on the contrary of the actual TP management
- …