443 research outputs found

    Risk reduction with clopidogrel in the management of peripheral arterial disease

    Get PDF
    Peripheral arterial disease (PAD) is a condition typified by decreased arterial blood flow in the non-coronary branches of the aorta as a result of chronic atherosclerosis. Despite the higher prevalence of PAD compared with other cardiovascular entities such as myocardial infarction and stroke, far less import is given to its diagnosis and treatment. In this review, we highlight principal diagnostic and therapeutic considerations in the management of PAD and its complications. We particularly emphasize the role of clopidogrel in the reduction of risks associated with PAD

    Superconducting properties of the In-substituted topological crystalline insulator, SnTe

    Get PDF
    We report detailed investigations of the properties of a superconductor obtained by substituting In at the Sn site in the topological crystalline insulator (TCI), SnTe. Transport, magnetization and heat capacity measurements have been performed on crystals of Sn0.6_{0.6}In0.4_{0.4}Te, which is shown to be a bulk superconductor with TconsetT_c^{\rm{onset}} at ∌4.70(5)\sim4.70(5)~K and TczeroT_c^{\rm{zero}} at ∌3.50(5)\sim3.50(5)~K. The upper and lower critical fields are estimated to be ÎŒ0Hc2(0)=1.42(3)\mu_0H_{c2}(0)=1.42(3)~T and ÎŒ0Hc1(0)=0.90(3)\mu_0H_{c1}(0)=0.90(3)~mT respectively, while Îș=56.4(8)\kappa=56.4(8) indicates this material is a strongly type II superconductor

    Changes in Dairy Cow Behavior with and without Assistance at Calving

    Get PDF
    The aim of this study was to characterize calving behavior of dairy cows and to compare the duration and frequency of behaviors for assisted and unassisted dairy cows at calving. Behavioral data from nine hours prior to calving were collected for 35 Holstein-Friesian dairy cows. Cows were continuously monitored under 24 h video surveillance. The behaviors of standing, lying, walking, shuffle, eating, drinking and contractions were recorded for each cow until birth. A generalized linear mixed model was used to assess differences in the duration and frequency of behaviors prior to calving for assisted and unassisted cows. The nine hours prior to calving was assessed in three-hour time periods. The study found that the cows spent a large proportion of their time either lying (0.49) or standing (0.35), with a higher frequency of standing (0.36) and shuffle (0.26) bouts than other behaviors during the study. There were no differences in behavior between assisted and unassisted cows. During the three-hours prior to calving, the duration and bouts of lying, including contractions, were higher than during other time periods. While changes in behavior failed to identify an association with calving assistance, the monitoring of behavioral patterns could be used as an alert to the progress of parturition

    Recent Decisions

    Get PDF

    Vitalism in Early Modern Medical and Philosophical Thought

    Get PDF
    Vitalism is a notoriously deceptive term. It is very often defined as the view, in biology, in early modern medicine and differently, in early modern philosophy, that living beings differ from the rest of the physical universe due to their possessing an additional ‘life-force’, ‘vital principle’, ‘entelechy’, enormon or Ă©lan vital. Such definitions most often have an explicit pejorative dimension: vitalism is a primitive or archaic view, that has somehow survived the emergence of modern science (the latter being defined in many different ways, from demystified Cartesian reductionism to experimental medicine, biochemistry or genetics: Cimino and Duchesneau eds. 1997, Normandin and Wolfe eds. 2013). Such dismissive definitions of vitalism are meant to dispense with argument or analysis. Curiously, the term has gained some popularity in English-language scholarship on early modern philosophy in the past few decades, where it is used without any pejorative dimension, to refer to a kind of ‘active matter’ view, in which matter is not reducible to the (mechanistic) properties of size, shape and motion, possessing instead some internal dynamism or activity (see e.g. James 1999, Boyle 2018, Borcherding forthcoming). The latter meaning is close to what the Cambridge Platonist Ralph Cudworth termed ‘hylozoism’, namely the attribution of life, agency or mind to matter, and he implicitly targeted several figures I shall mention here, notably Margaret Cavendish and Francis Glisson, for holding this view. However, one point I shall make in this entry is that when vitalism first appears by name, and as a self-designation, in the Montpellier School (associated with the Faculty of Medicine at the University of Montpellier, in the second half of the eighteenth century; thus vitalisme appears first, followed shortly thereafter by Vitalismus in German, with ‘vitalism’ appearing in English publications only in the early nineteenth century: Toepfer 2011), it is quite different from both the more ‘supernatural’ view described above – chiefly espoused by its rather obsessive opponents – and from the more neutral, but also de-biologized philosophical view (that of e.g. Cavendish or Conway who are, broadly speaking naturalists). Rather than appealing to a metaphysics of vital force, or of self-organizing matter, this version of vitalism, which I shall refer to as ‘medical vitalism’, seems to be more of a ‘systemic’ theory: an attempt to grasp and describe top-level (‘organizational’, ‘organismic’, ‘holistic’) features of living systems (Wolfe 2017, 2019). In this entry I seek to introduce some periodization in our thinking about early modern (and Enlightenment) vitalism, emphasizing the difference between the seventeenth-century context and that of the following generations – culminating in the ideas of the Montpellier School. This periodization should also function as a kind of taxonomy or at least distinction between some basic types of vitalism. As I discuss in closing, these distinctions can cut across the texts and figures we are dealing with, differently: metaphysical vs. non-metaphysical vitalism, philosophical vs. medical vitalism, medical vs. ‘embryological’ vitalism, and so on. A difference I can only mention but not explore in detail is that the more medically grounded, ‘organismic’ vitalism is significantly post-Cartesian while the more biological/embryological vitalism is, inasmuch as it is a dynamic, self-organizing matter theory, an extension of Renaissance ideas (chymiatry, Galenism and in general theories of medical spirits). I examine successively vitalism’s Renaissance prehistory, its proliferation as ‘vital matter theory’ in seventeenth-century England (in authors such as Cavendish, Conway and Glisson, with brief considerations on Harvey and van Helmont), and its mature expression in eighteenth-century Montpellier (notably with Bordeu and MĂ©nuret de Chambaud)
    • 

    corecore