33 research outputs found

    Establishment and Characterization of a New Intrahepatic Cholangiocarcinoma Cell Line Resistant to Gemcitabine

    Get PDF
    Intrahepatic cholangiocarcinoma (ICC) is one of the most lethal liver cancers. Late diagnosis and chemotherapy resistance contribute to the scarce outfit and poor survival. Resistance mechanisms are still poorly understood. Here, we established a Gemcitabine (GEM) resistant model, the MT-CHC01R1.5 cell line, obtained by a GEM gradual exposure (up to 1.5 µM) of the sensitive counterpart, MT-CHC01. GEM resistance was irreversible, even at high doses. The in vitro and in vivo growth was slower than MT-CHC01, and no differences were highlighted in terms of migration and invasion. Drug prediction analysis suggested that Paclitaxel and Doxycycline might overcome GEM resistance. Indeed, in vitro MT-CHC01R1.5 growth was reduced by Paclitaxel and Doxycycline. Importantly, Doxycycline pretreatment at very low doses restored GEM sensitivity. To assess molecular mechanisms underlying the acquisition of GEM resistance, a detailed analysis of the transcriptome in MT-CHC01R1.5 cells versus the corresponding parental counterpart was performed. Transcriptomic analysis showed that most up-regulated genes were involved in cell cycle regulation and in the DNA related process, while most down-regulated genes were involved in the response to stimuli, xenobiotic metabolism, and angiogenesis. Furthermore, additional panels of drug resistance and epithelial to mesenchymal transition genes (n = 168) were tested by qRT-PCR and the expression of 20 genes was affected. Next, based on a comparison between qRT-PCR and microarray data, a list of up-regulated genes in MT-CHC01R1.5 was selected and further confirmed in a primary cell culture obtained from an ICC patient resistant to GEM. In conclusion, we characterized a new GEM resistance ICC model that could be exploited either to study alternative mechanisms of resistance or to explore new therapies

    A multistate model of survival prediction and event monitoring in prefibrotic myelofibrosis

    Get PDF
    Among 382 patients with WHO-defined prefibrotic myelofibrosis (pre-PMF) followed for a median of 6.9 years, fibrotic or leukemic transformation or death accounts for 15, 7, and 27% of cases, respectively. A multistate model was applied to analyze survival data taking into account intermediate states that are part of the clinical course of pre-PMF, including overt PMF and acute myeloid leukemia (AML). Within this multistate framework, multivariable models disclosed older age (>65 years) and leukocytosis (>15 x 10(9)/L) as predictors of death and leukemic transformation. The risk factors for fibrotic progression included anemia and grade 1 bone marrow fibrosis. The outcome was further affected by high molecular risk (HMR) but not driver mutations. Direct transition to overt PMF, AML, or death occurred in 15.2, 4.7, and 17.3% of patients, respectively. The risk of AML was the highest in the first 5 years (7%), but leveled off thereafter. Conversely, the probability of death from overt PMF or AML increased more rapidly over time, especially when compared to death in the pre-PMF state without disease progression. The probability of being alive with pre-PMF status decreased to 70 and 30% at 10 and 20 years, respectively. This study highlights the aspects of the clinical course and estimates of disease progression in pre-PMF

    Assessment of a High Sensitivity Method for Identification of <i>IDH1</i> R132x Mutations in Tumors and Plasma of Intrahepatic Cholangiocarcinoma Patients

    No full text
    Hotspot codon 132 mutations (R132xIDH1m) are frequent in intrahepatic cholangiocarcinoma (ICC), are druggable by anti-IDH1m agents, and could represent a marker of disease progression. Developing an assay to identify R132xIDH1m would provide a useful tool to select patients benefitting from targeted treatments. We tested a quantitative real-time allele-specific polymerase chain reaction (qPCR)-based method to detect the main R132xIDH1m in an Italian ICC series (n = 61) of formalin-fixed paraffin-embedded (FFPE) samples, and on circulating-free DNA samples. The outcomes were compared with nested PCR/Sanger sequencing. Reconstitution experiments of plasmids harboring the different R132xIDH1m mixed with wild-type (WT) DNA demonstrated that qPCR is able to detect at least 2% of all mutated allele. High efficiency was also observed on patient-derived mutated DNA mixed with WT DNA (up to 10% and 0.3 ng of mutated template); qPCR detected 16.4% of mutated samples (one R132G, three R132C and six R132L) while nested PCR/Sanger sequencing only 8.2% (four R132L and one R132G). In a single patient with an R132C-mutated tumor, qPCR was also performed on plasma samples collected at four time-points, observing an increase correlating with disease progression. In conclusion, we developed a qPCR assay which could represent a fast, inexpensive and sensitive tool both for detection of R132xIDH1m in ICC samples and monitoring disease progression from liquid biopsy

    Validation of the IPSET score for thrombosis in patients with prefibrotic myelofibrosis

    Get PDF
    Pre-fibrotic myelofibrosis (pre-PMF) and essential thrombocythemia (ET) are characterized by similarly increased rate of thrombotic events, but no study specifically analyzed risk factors for thrombosis in pre-PMF. In a multicenter cohort of 382 pre-PMF patients collected in this study, the rate of arterial and venous thrombosis after diagnosis was 1.0 and 0.95% patients/year. Factors significantly associated with arterial thrombosis were age, leukocytosis, generic cardiovascular risk factors, JAK2V617F and high molecular risk mutations, while only history of previous thrombosis, particularly prior venous thrombosis, was predictive of venous events. The risk of total thromboses was accurately predicted by the the international prognostic score for thrombosis in essential thrombocythemia (IPSET) score, originally developed for ET, and corresponded to 0.67, 2.05, and 2.95% patients/year in the low-, intermediate-, and high-risk categories. IPSET was superior to both the conventional 2-tiered score and the revised IPSET in this cohort of pre-PMF patients. We conclude that IPSET score can be conveniently used for thrombosis risk stratification in patients with pre-PMF and might represent the basis for individualized management aimed at reducing the increased risk of major cardiovascular events. Further refinement of the IPSET score in pre-PMF might be pursued by additional, prospective studies evaluating the inclusion of leukocytosis and/or adverse mutational profile as novel variables
    corecore