100 research outputs found

    PBO textile embedded in FRCM for confinement of r.c. columns

    Get PDF
    Results of experimental tests on two reinforced concrete columns confined with PBO-FRCM jacketing subject to axial load and bending moments are presented, showing the effectiveness of the confinement system. Comparison of test results against theoretical results derived by a fiber model stress the ability of the confinement system to enhance both strength and deformation capacity of the confined concret

    Seismic analysis and risk mitigation of existing constructions

    Get PDF
    Following a thorough and lengthy procedure, we would like to thank all contributors for their highest calibre papers, which comprise the Special Issue on \u201cSeismic analysis and risk mitigation of existing constructions\u201d of the Open Construction and Building Technology Journal. The topic of the Special Issue encompasses a large number of issues spanning the design of special interventions for the reduction of the effects of earthquakes on civil structures and infrastructures, to the structural identification and assessment issues. The field of seismic engineering is continuously looking for new strategies and methods, which empower the designers and make them able to obtain more accurate response predictions. Researchers are involved in this process and are called to successfully encounter new challenges emerging from the increasing need for the assessment of existing constructions, especially when assuming strategic roles. As is also reflected by the papers presented in the Special Issue, the continuous advances of the research in this field moves across two basic directions. On the one hand, there is the direction of the robustness and the reliability of the recent nonlinear seismic assessment methods (static, dynamic, incremental dynamic). Several approaches can be followed to predict the response of structures to strong ground motions; however the results coming from each of them are in some cases conflicting and not always amenable to easy interpretation. On the other hand, the reliability of structural models still remains a major task of structural engineering and of seismic engineering in particular. Mathematical models have to reproduce the physics of structures and its evolution during complex damaging processes. Global and local models tend to reflect this by minimizing the loss of information. In the Special Issue, we are proud to present state-of-the-art research findings described in detail in 9 papers authored by 27 researchers of different universities in Italy, California (USA), Greece and United Kingdom. The papers deal with the seismic analysis and risk mitigation aiming to address different purposes by proposing numerical, analytical approaches and experimental tests

    La Stima dei Moduli Elastici delle Murature Secondo le Norme Tecniche: il Confronto con la Sperimentazione

    Get PDF
    Nel presente lavoro viene proposto uno studio sperimentale per la caratterizzazione meccanica di diverse tipologie di muratura. Vengono in particolare valutati i moduli elastici longitudinali e tangenziali che come è noto condizionano la risposta di sistemi murari sotto carichi laterali. I valori sperimentali sono confrontati con quelli stimabili per mezzo dei modelli proposti dalle normative tecniche italiana (DM 14/01/2008) e europea (Eurocodice 6). Lo studio prende spunto dalla questio posta dalla norma americana (MSJC 2008) che, pur proponendo l’uso di tali modelli, riconosce la poca sperimentazione eseguita a supporto della loro validazione. La campagna sperimentale ha incluso prove di compressione sui componenti (malte e blocchi), prove di compressione diagonale e prove di compressione ordinaria (in direzione ortogonale ai letti di malta) su porzioni di muratura. I risultati conseguiti hanno consentito la valutazione diretta dei moduli elastici e successivamente di ottenere le grandezze meccaniche necessarie per l’utilizzo dei succitati modelli normativi

    Definition of seismic vulnerability maps for civil protection systems: The case of lampedusa Island

    Get PDF
    The opportunity to locate and quantify the major criticalities associated to natural catastrophic events on a territory allows to plan adequate strategies and interventions by civil protection bodies involved in local and international emergencies. Seismic risk depends, most of all, on the vulnerability of buildings belonging to the urban areas. For this reason, the definition, by a deep analysis of the territory, of instruments identifying and locating vulnerability, largely favours the activities of institutions appointed to safeguard the safety of citizens. This paper proposes a procedure for the definition of vulnerability maps in terms of vulnerability indexes and critical peak ground accelerations for mid-small urban centres belonging to Mediterranean areas. The procedure, tested on the city centre of the Island of Lampedusa, is based on a preliminary historical investigation of the urban area and of the main formal and technological features of buildings involved. Moreover, the vulnerability of the constructions is evaluated by fast assessment methods (filling of evaluation forms). The vulnerability model, allowing the definition of the fragility curves, is calibrated on the basis of the results of an identification process of prototype buildings, selected to be adequately representative. Their characterizations have been provided using the results of an experimental dynamic investigation to develop high representative numerical model. Critical PGA values have been determined by pushover analyses. The results presented provided an unambiguous representation of the major criticalities with respect to seismic vulnerability and risk, of the city centre of the island, being a suitable tool for planning and handling of emergencies

    Strategies for waste recycling : the mechanical performance of concrete based on limestone and plastic waste

    Get PDF
    Recycling is among the best management strategies to avoid dispersion of several types of wastes in the environment. Research in recycling strategies is gaining increased importance in view of Circular Economy principles. The exploitation of waste, or byproducts, as alternative aggregate in concrete, results in a reduction in the exploitation of scarce natural resources. On the other hand, a productive use of waste leads to a reduction in the landfilling of waste material through the transformation of waste into a resource. In this frame of reference, the paper discusses how to use concrete as a container of waste focusing on the waste produced in limestone quarries and taking the challenge of introducing plastic waste into ordinary concrete mixes. To prove the possibility of reaching this objective with acceptable loss of performance, the mechanical characteristics of concrete mixed with additional alternative aggregates classified as waste are investigated and discussed in this paper through the presentation of two experimental campaigns. The first experimental investigation refers to concrete made with fine limestone waste used as a replacement for fine aggregate (sand), while the second experimental program refers to the inclusion of three types of plastic wastes in the concrete. Different mixes with different percentages of wastes are investigated to identify possible fields of application. The experimental results indicate that use of limestone quarry waste and use of plastic waste are possible within significant percentage ranges, having recognized a limited reduction of concrete strength that makes concrete itself appropriate for different practical applications.peer-reviewe

    A novel heuristic algorithm for the modeling and risk assessment of the covid-19 pandemic phenomenon

    Get PDF
    The modeling and risk assessment of a pandemic phenomenon such as COVID-19 is an important and complicated issue in epidemiology, and such an attempt is of great interest for public health decision-making. To this end, in the present study, based on a recent heuristic algorithm proposed by the authors, the time evolution of COVID-19 is investigated for six different countries/states, namely New York, California, USA, Iran, Sweden and UK. The number of COVID-19-related deaths is used to develop the proposed heuristic model as it is believed that the predicted number of daily deaths in each country/state includes information about the quality of the health system in each area, the age distribution of population, geographical and environmental factors as well as other conditions. Based on derived predicted epidemic curves, a new 3D-epidemic surface is proposed to assess the epidemic phenomenon at any time of its evolution. This research highlights the potential of the proposed model as a tool which can assist in the risk assessment of the COVID-19. Mapping its development through 3D-epidemic surface can assist in revealing its dynamic nature as well as differences and similarities among different districts

    Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks

    Get PDF
    There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.- Pfizer Pharmaceuticals(undefined
    corecore