152 research outputs found

    Bipolar Lawson Tau-Surfaces and Generalized Lawson Tau-Surfaces

    Full text link
    Recently Penskoi [J. Geom. Anal. 25 (2015), 2645-2666, arXiv:1308.1628] generalized the well known two-parametric family of Lawson tau-surfaces τr,m\tau_{r,m} minimally immersed in spheres to a three-parametric family Ta,b,cT_{a,b,c} of tori and Klein bottles minimally immersed in spheres. It was remarked that this family includes surfaces carrying all extremal metrics for the first non-trivial eigenvalue of the Laplace-Beltrami operator on the torus and on the Klein bottle: the Clifford torus, the equilateral torus and surprisingly the bipolar Lawson Klein bottle τ~3,1\tilde{\tau}_{3,1}. In the present paper we show in Theorem 1 that this three-parametric family Ta,b,cT_{a,b,c} includes in fact all bipolar Lawson tau-surfaces τ~r,m\tilde{\tau}_{r,m}. In Theorem 3 we show that no metric on generalized Lawson surfaces is maximal except for τ~3,1\tilde{\tau}_{3,1} and the equilateral torus.Comment: arXiv admin note: text overlap with arXiv:1308.1628 by other author

    On the convergence of spectral deferred correction methods

    Get PDF
    In this work we analyze the convergence properties of the Spectral Deferred Correction (SDC) method originally proposed by Dutt et al. [BIT, 40 (2000), pp. 241--266]. The framework for this high-order ordinary differential equation (ODE) solver is typically described wherein a low-order approximation (such as forward or backward Euler) is lifted to higher order accuracy by applying the same low-order method to an error equation and then adding in the resulting defect to correct the solution. Our focus is not on solving the error equation to increase the order of accuracy, but on rewriting the solver as an iterative Picard integral equation solver. In doing so, our chief finding is that it is not the low-order solver that picks up the order of accuracy with each correction, but it is the underlying quadrature rule of the right hand side function that is solely responsible for picking up additional orders of accuracy. Our proofs point to a total of three sources of errors that SDC methods carry: the error at the current time point, the error from the previous iterate, and the numerical integration error that comes from the total number of quadrature nodes used for integration. The second of these two sources of errors is what separates SDC methods from Picard integral equation methods; our findings indicate that as long as difference between the current and previous iterate always gets multiplied by at least a constant multiple of the time step size, then high-order accuracy can be found even if the underlying "solver" is inconsistent the underlying ODE. From this vantage, we solidify the prospects of extending spectral deferred correction methods to a larger class of solvers to which we present some examples.Comment: 29 page

    Asymptotic and numerical analysis of time-dependent wave propagation in dispersive dielectric media that exhibit fractional relaxation

    Get PDF
    This dissertation addresses electromagnetic pulse propagation through anomalously dispersive dielectric media. The Havriliak-Negami (H-N) and Cole-Cole (C-C) models capture the non-exponential nature of such dielectric relaxation phenomena, which is manifest in a variety of dispersive dielectric media. In the C-C model, the dielectric polarization is coupled to the time-dependent Maxwell\u27s equations by a fractional differential equation involving the electric field. In the H-N case, a more general pseudo-fractional differential operator describes the polarization. The development and analysis of a robust method for implementing such models is presented, with an emphasis on algorithmic efficiency. Separate numerical schemes are presented for C-C and H-N media. A straightforward numerical implementation of these models using finite-difference time-domain (FD-TD) techniques is expected to be second order accurate in both space and time. However due to the singular nature of the kernels appearing in the fractional convolution operators, the standard C-C implementation, produces first order accuracy in time. As we show, this method is equivalent to most approaches presented in the current literature, which implies that they are also first order. The desired accuracy is instead achieved by applying multistep methods to the fractional differential equation; however multistep methods are unnecessary in the H-N implementation to preserve the accuracy. Furthermore, the C-C model is a specific case of the H-N model and can therefore be constructed using the latter of these approaches. The FD-TD methods are validated by evaluating the electric field for the signaling problem, using numerical quadrature to evaluate the integral form of the solution. This is accomplished using the Green\u27s function of the dispersive medium; in addition, the behavior of pulse propagation is studied asymptotically using the Green\u27s function, which further validates the observed results of the numerical experiments

    The Agricultural College Editor and the Nitrite Scare: Reporting Utter Chaos

    Get PDF
    The responsibility for cutting a path through the tangled wood of information and misinformation to lead excited consumers, pork producers, legislators and even some scientists to the facts of the nitrite issue lies squarely on the shoulders of editors - in both print and electronic media

    Method of lines transpose: High order L-stable O(N) schemes for parabolic equations using successive convolution

    Get PDF
    We present a new solver for nonlinear parabolic problems that is L-stable and achieves high order accuracy in space and time. The solver is built by first constructing a single-dimensional heat equation solver that uses fast O(N) convolution. This fundamental solver has arbitrary order of accuracy in space, and is based on the use of the Green's function to invert a modified Helmholtz equation. Higher orders of accuracy in time are then constructed through a novel technique known as successive convolution (or resolvent expansions). These resolvent expansions facilitate our proofs of stability and convergence, and permit us to construct schemes that have provable stiff decay. The multi-dimensional solver is built by repeated application of dimensionally split independent fundamental solvers. Finally, we solve nonlinear parabolic problems by using the integrating factor method, where we apply the basic scheme to invert linear terms (that look like a heat equation), and make use of Hermite-Birkhoff interpolants to integrate the remaining nonlinear terms. Our solver is applied to several linear and nonlinear equations including heat, Allen-Cahn, and the Fitzhugh-Nagumo system of equations in one and two dimensions

    Method of lines transpose: an efficient A-stable solver for wave propagation

    Get PDF
    Building upon recent results obtained in [7,8,9], we describe an efficient second order, A-stable scheme for solving the wave equation, based on the method of lines transpose (MOLT), and the resulting semi-discrete (i.e. continuous in space) boundary value problem. In [7], A-stable schemes of high order were derived, and in [9] a high order, fast O(N) spatial solver was derived, which is matrix-free and is based on dimensional-splitting. In this work, are interested in building a wave solver, and our main concern is the development of boundary conditions. We demonstrate all desired boundary conditions for a wave solver, including outflow boundary conditions, in 1D and 2D. The scheme works in a logically Cartesian fashion, and the boundary points are embedded into the regular mesh, without incurring stability restrictions, so that boundary conditions are imposed without any reduction in the order of accuracy. We demonstrate how the embedded boundary approach works in the cases of Dirichlet and Neumann boundary conditions. Further, we develop outflow and periodic boundary conditions for the MOLT formulation. Our solver is designed to couple with particle codes, and so special attention is also paid to the implementation of point sources, and soft sources which can be used to launch waves into waveguides
    corecore