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ABSTRACT

ASYMPTOTIC AND NUMERICAL ANALYSIS OF
TIME-DEPENDENT WAVE PROPAGATION IN DISPERSIVE

DIELECTRIC MEDIA THAT EXHIBIT FRACTIONAL RELAXATION

by
Matthew Frank Causley

This dissertation addresses electromagnetic pulse propagation through anomalously

dispersive dielectric media. The Havriliak-Negami (H-N) and Cole-Cole (C-C) models

capture the non-exponential nature of such dielectric relaxation phenomena, which is

manifest in a variety of dispersive dielectric media. In the C-C model, the dielectric

polarization is coupled to the time-dependent Maxwell’s equations by a fractional

differential equation involving the electric field. In the H-N case, a more general

pseudo-fractional differential operator describes the polarization.

The development and analysis of a robust method for implementing such models

is presented, with an emphasis on algorithmic efficiency. Separate numerical schemes

are presented for C-C and H-N media. A straightforward numerical implementation

of these models using finite-difference time-domain (FD-TD) techniques is expected

to be second order accurate in both space and time. However due to the singular

nature of the kernels appearing in the fractional convolution operators, the standard

C-C implementation, produces first order accuracy in time. As we show, this method

is equivalent to most approaches presented in the current literature, which implies

that they are also first order. The desired accuracy is instead achieved by applying

multistep methods to the fractional differential equation; however multistep methods

are unnecessary in the H-N implementation to preserve the accuracy. Furthermore,

the C-C model is a specific case of the H-N model and can therefore be constructed

using the latter of these approaches.

The FD-TD methods are validated by evaluating the electric field for the signal-

ing problem, using numerical quadrature to evaluate the integral form of the solution.



This is accomplished using the Green’s function of the dispersive medium; in addition,

the behavior of pulse propagation is studied asymptotically using the Green’s function,

which further validates the observed results of the numerical experiments.
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CHAPTER 1

INTRODUCTION

The study of dielectric relaxation in materials has been the subject of theoretical

and applied investigations for more than a century. The pioneering work of Debye

[9] in this field has been expanded by Cole and Cole [6], Davidson and Cole [8],

and Havriliak and Negami [17], to produce a hierarchical class of empirical dielectric

models. The latter of these is given in the frequency domain by

ε̂(ω) = ε∞ +
εs − ε∞

(1 + (iωτ)α)β
. (1.1)

The Havriliak-Negami (H-N) model consists of five parameters, which describe the

frequency-dependent nature of dielectric relaxation. The static or DC limit ε̂(0) = εs,

and the infinite-frequency limit ε̂(∞) = ε∞ of the permittivity satisfy εs > ε∞ ≥ 1.

The transition region between these values occurs in the frequency domain, and is

centered at ωτ = 1/τ ; hence τ is the central relaxation time. The remaining fractional

parameters α and β satisfy 0 < α, β ≤ 1, and stretch the duration of the relaxation

process.

The Debye model [9] is obtained by setting α = β = 1 in (1.1), and corresponds

to classical, or exponential dielectric relaxation. Whenever at least one of these

parameters α and β is not unity, the behavior will be non-exponential, or anomalous.

The important limiting cases are given by the Cole-Cole [6] (0 < α < 1, β = 1) and

Cole-Davidson [8] (0 < β < 1, α = 1) models. Collectively these empirical models

have been used to describe a host of complex heterogeneous materials when subjected

to electric fields over a range of frequencies.

The H-N model constitutes a causal dielectric model for complex frequency

s = iω, when the branch −π < arg s ≤ π is taken. The H-N and related models are

1
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empirical, in that the parameter values are obtained by fitting to data that is collected

over several decades of frequencies. A fairly recent work by Kalmykov et. al [21] has

offered a means to derive the H-N model from first principles. Their explanation

considers the complex microstructure of spatially heterogeneous dielectrics. They

have shown that the H-N model arises naturally by assuming that a collection of

electrically noninteracting dipoles will be governed by Brownian motion, which rotate

according to a fractal time random walk. This is an extension of Debye’s original

work, which assumed a discrete time random walk, and led to exponential relaxation.

The only shortcoming of their approach is the lack of physical interpretation of the

parameter β above; the parameter α is explained by the fractal dimension of the

random walk that is assumed. Nevertheless, Kalmykov’s analysis lends credence

to many experimental observations (e.g., [1], [5], [13], [19], [24]), which indicate that

anomalous relaxation is produced by the superposition of various relaxation processes

that occur during overlapping time scales.

The development of broadband dielectric spectroscopy has made it possible to

interrogate and characterize the complex permittivity of dielectric materials over a

large range of frequencies (typically in the MHz to GHz range). As a result, the

H-N and related models have been demonstrated to accurately describe the observed

permittivity of various materials, over broadband frequency regimes. While typical

H-N materials consist mostly of glassy materials [1], and amorphous polymers near

the glass-liquid transition [13] phase, the Cole-Cole (C-C) model has been used in

the characterization of soils [32], and even biological tissues [12]. In particular,

Gabriel et. al to made extensive use of the C-C model in [12] to construct broadband

approximations for the permittivity of many biological tissues. The Cole-Davidson

(C-D) model has similarly been used to make exceptionally accurate fits to doped

silicon [19]. Additionally, multi-pole Debye models have been used to describe aqueous

and non-aqueous electrolyte solutions [5], [24].
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Figure 1.1 Dielectric Spectrometer with high and low-frequency attachments.
Source: Institute of Solid State Research

Figure 1.2 Thermal imaging of the hu-
man head showing the effects of electro-
magnetic radiation due to cell phone usage.
Source: ewg.org

Figure 1.3 Microstructure of complex
biological tissues, which obey the Cole-
Cole dielectric model. Source: University
of Sheffield Archaeology
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The simulation of electric pulse propagation through such materials is therefore

of great use in a variety of technological applications. The H-N and C-D models

could be used in the study and development of semiconductor components. Similarly,

simulation of propagation through C-C materials play a key role in the discovery of

oil in heterogeneous soils [32]. Perhaps most importantly though is the ability of the

C-C model to increase our understanding of the transient nature of electromagnetic

radiation in the human body [7], [23] [12]. Recent developments have made possible

the generation of fast rise-time electric pulses which contain ultrawideband (UWB)

spectra and low power densities, which make them safe for human exposure. This has

made millimeter wave technologies a feasible alternative to various older technologies,

including X-ray, radar and other related imaging techniques. This alone makes the

need for simulations of pulse propagation in dispersive dielectric media imminent.

In the ensuing chapters, we will consider for simplicity a model problem, which

consists of a source-free medium contained in a half-space x > 0, whose dielectric

permittivity is given by equation (1.1), and whose magnetic permeability is that of

free space, µ = µ0. In the absence of surface charges, the time-dependent Maxwell’s

equations are then given as

∂B

∂t
= −∇× E (1.2)

∂D

∂t
= ∇×H, (1.3)

where the magnetic flux vector is given in terms of the magnetic field by the constitu-

tive relation B = µ0H, and the electric displacement vector will be similarly defined

in the frequency domain as

D̂(x, ω) = ε0ε̂(ω)Ê(x, ω). (1.4)

We will follow the convention of defining the the permittivity in terms of the complex

susceptibility, and the displacement vector in terms of an induced polarization field;
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thus

D = ε0ε∞E + P (1.5)

where

P(x, t) = ε0

∫ t

−∞
χ(t− t′)E(x, t′)dt′, (1.6)

and where the dielectric susceptibility χ(t) is given as

χ(t) = L−1

{
εs − ε∞

(1 + (sτ)α)β

}
, (1.7)

where L−1{·} is the inverse Laplace transform, and s = iω is the complex frequency.

Without loss of generality, we will assume that all fields are zero for t ≤ 0. At

this time, the medium is excited by a normally incident incoming electric pulse at

the air-medium interface, x = 0. The resulting plane wave geometry reduces the

magnetic and electric field vectors to scalar field quantities H = Hyŷ E = Ezẑ which

are uniform in the y and z directions. Thus, the reduced Maxwell system is comprised

of the coupled scalar equations

∂

∂t
(µ0H) =

∂E

∂x
, (1.8)

∂

∂t
(ε0ε∞E + P ) =

∂H

∂x
, (1.9)

E(0, t) = f(t), t > 0. (1.10)

The polarization field P = Pzẑ is similarly expressed by equation (1.6) in a suitably

scalar form.

In Chapter 2, we will solve this model problem with signaling data to study pulse

propagation through H-N (and related) dielectrics. As part of this discussion, we will

develop a means to obtain the electric field using the inverse Laplace transform, which

will be used to validate the finite difference computations. Additionally, we will also
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explore the nature of the impulse response at the wave front in an H-N material,

using asymptotic approximations for short and large depths.

Dielectric permittivity models are typically implemented using the finite-difference

time-domain (FD-TD) [35]. In the case of the Cole-Cole model, one approach is to

determine P through an auxiliary fractional differential equation that is forced by the

electric field,

Dα
t P + P = ε0(εs − ε∞)E, (1.11)

where Dα
t is the fractional time derivative of order α. Previous works have used

auxiliary (ordinary) differential equations for the Debye [26] and Cole-Cole [16] di-

electric models. In Chapter 3, we will address the numerical evaluation of fractional

derivatives and fractional differential equations, and the FD-TD implementation of

the Cole-Cole dielectric model.

In the case of the H-N model, this fractional differential equation is formally a

fractional pseudo-differential operator

(ταDα
t + 1)βP = ε0(εs − ε∞)E, (1.12)

which cannot be incorporated into the FD-TD method in a straightforward manner.

An alternative approach, which we develop in Chapter 4, is to incorporate the H-N

dielectric model into Ampere’s Law by determining the polarization field P via

convolution in time of the electric field (1.6) and the time-domain susceptibility

χ(t) (1.7). A straightforward implementation of this convolution is computationally

prohibitive due to the non-exponential nature of χ(t), which is singular at t = 0+

and decays algebraically for t > 0. While we will develop this approach in the

FD-TD setting, the methods are general, and can be applied to any computational

electromagnetics code that solves the time-domain Maxwell system in its differential
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form. This latter approach also possesses the advantage that the C-C and C-D models

can be treated, with no additional augmentations required.

In each of Chapters 3 and 4, we provide a detailed analysis of the convergence

of the numerical schemes, where great care is taken to preserve the second order

accuracy in space and time that is inherited from the FD-TD scheme. The stability

and phase error of the numerical solutions is also analyzed in each case.



CHAPTER 2

THE MODEL PROBLEM AND ITS ASYMPTOTIC ANALYSIS

2.1 Analytical Solution

The electric field for a given incident pulse f(t) can be obtained in terms of the Green’s

function for the H-N medium. We first combine the first order system of PDEs (1.8)

into a single second order equation, by cross differentiation and elimination of the

magnetic field

∂2

∂t2
(ε0ε∞E + P ) =

1

µ0

∂2

∂x2
E, x > 0, t > 0, (2.1)

E(0, t) = f(t), t > 0, (2.2)

where the polarization is still given in terms of the electric field by (1.6). Elimination

of P is then possible by taking the Laplace transform of equation (1.6), so that

P̂ (x, s) = χ(s)Ê(x, s), where Ê(x, s) = L{E} denotes the Laplace transform, and

s = iω is the frequency. Thus(
s

c(s)

)2

Ê =
∂2Ê

∂x2
, x > 0 (2.3)

Ê(0, s) = F (s), (2.4)

where

1

c(s)
=

√
µ0ε0

(
ε∞ +

εs − ε∞
(1 + (sτ)α)β

)
. (2.5)

The associated Green’s function Ψ(x, t) is obtained by solving the above problem,

with F (s) = 1 and imposing the condition that Ψ̂(x, s) remain bounded as x → ∞,

which yields

Ψ̂(x, s) = e−sx/c(s). (2.6)

8
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This will thus be the impulse response for an H-N medium, and so the electric field

resulting from an incident pulse f(t) will be given as

E(x, t) = L−1
{
F (s)Ψ̂(x, s)

}
=

1

2πi

∫ ζ+i∞

ζ−i∞

[
F (s)e−

sx
c∞

q(sτ)
]
estds, t ≥ x

c∞
(2.7)

where c∞ = 1/
√
µ0ε0ε∞, F (s) = L{f(t)}, and q = c∞/c(s) is a scaled expression of

the frequency-dependent inverse wave speed

q(sτ) =

√
1 +

r − 1

(1 + (sτ)α)β
, r =

εs
ε∞
. (2.8)

When F (s) = 1, equation (2.7) will produce the time domain representation of the

impulse response Ψ(x, t). Equation (2.7) can be studied asymptotically, as well

as approximated numerically using a suitably deformed Bromwich contour in the

complex s domain. The region of analyticity of Ψ̂ will be independent of α and

β. In particular, the square root introduced by equation (2.8) produces a branch

cut along the negative real axis, and so the region of analyticity will be s for which

−π < arg s < π. Thus, we can deform the Bromwich contour to be any curve that

begins at s = ∞ in the third quadrant, passes to the right of the singularities of F ,

and terminates at s =∞ in the second quadrant. Once a suitable contour is chosen,

we construct the N quadrature points (wk, sk), where each sk is on the contour; we

then apply the mapping s = z/t, so that the impulse response is approximated as

Ψ(x, t) ≈
N∑
k=1

wk
t

exp

(
sk
t

[
t− x

c∞
q(skτ/t)

])
. (2.9)

If F (s) is known, then E can be computed directly with this method, by replacing wk

with wkF (sk/t). Otherwise, we can obtain Ψ(x, t), and convolve in the time domain

with the pulse f(t). Of course, the choice of the contour will determine the accuracy

of the approximation, and will determine the number of points N required to obtain
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Figure 2.1 Numerically determined steepest descent contours for the H-N impulse
response. The contour moves to the left as the parameter θ = c∞t

x
increases, and

the saddle point moves into the origin when θ = c∞
cs

(dotted line). For θ > c∞
cs

, the
contour forms a cusp at the origin.

a desired accuracy. Ideally a steepest descent contour would be determined, which

will pass through a saddle point, and along which the imaginary part of the phase

φ = s
[
t− x

c∞
q(sτ)

]
is constant. The saddle point satisfies dφ/ds = 0, which yields

the expression

θ = q(sτ) + sτq′(sτ)

=
1

q(sτ)

(
(q(sτ))2 − αβ(sτ)α

2(1 + (sτ)α)
((q(sτ))2 − 1)

)
=

1√
1 + r−1

(1+(sτ)α)β

(
1 +

r − 1

(1 + (sτ)α)β
− αβ(r − 1)(sτ)α

2(1 + (sτ)α)β+1

)
(2.10)
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Figure 2.2 Behavior of the contour near the origin. The behavior of the contours
for θ > cst

x
, θ = cst

x
and θ < cst

x
are shown.

where θ = c∞t
x

; note that the saddle point does not depend on x and t individually,

but only on their ratio. In addition, due to causality, we restrict ourselves to θ ≥ 1,

which corresponds to the characteristic ray t = x/c∞. Unfortunately, this unwieldy

expression is a nonlinear equation, that can be rationalized into a polynomial (of

degree 4) in sα only when β = 1; otherwise the equation is transcendental. Instead

of seeking a closed form solution, we find real s that satisfies this expression using

Newton’s method. In terms of the parameter θ, the saddle point moves along the real

line, decreasing from s(1) =∞, to s(θ∗) = 0, where θ∗ =
√
r = c∞

cs
corresponds to the

subcharacteristic ray t = x/cs. For t > x/cs, no real-valued saddle point will exist,

and the steepest descent contour will develop a cusp at the origin. This is illustrated
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in Figures 2.1 and 2.2 for the H-N model with a representative set of parameters, with

x fixed, and increasing θ. When the saddle point exists, the contour passes through

it vertically (arg s = ±π
2
). Although Figure 2.1 is useful to examine, it falls short of

providing a parametric representation of the equation from which s (and thus, ds)

can be obtained explicitly. This approach will become more useful in the asymptotic

estimates for the impulse response below. Instead, we proceed in evaluating Ψ(x, t)

by choosing a hyperbolic contour, as used in [38] to perform numerical inverse Laplace

transforms. This contour is given by

s(u) = µ (1 + sin (iu− a)) , −∞ < u <∞, (2.11)

and provides a means to construct the weights and nodes (wk, sk). Specifically, we

set

sk = µ (1 + sin (iuk − a)) , wk =
µ

2π
cos (iuk − a), −N

2
≤ k ≤ N

2
(2.12)

where uk = kh, with an appropriate step size h. As shown in [38], selection of the

parameters h, µ and a can be made by asymptotic balancing of the error terms. There

will be two sources of error in the approximation: the truncation error, which arises

when the infinite limits −∞ < u < ∞ are truncated to −Nh < u < Nh; and the

discretization error, or quadrature error due to approximation of the integral with a

finite sum.

This construction of the impulse response Ψ(x, t) will be shown below to validate

the asymptotic behavior of the wavefront at short and large depths, and in Chapters

3 and 4 to validate the FD-TD solutions of the electric field. Solutions obtained using

this hyperbolic contour are further validated by computing the impulse response

independently. The alternative method follows from folding the Bromwich curve on

the branch cut, s = ue±πi, 0 < u < ∞. The integral is discretized in this case with
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Gauss-Legendre quadrature, with an excessively large number of nodes (3 to 4 times

as many as those used in the hyperbolic contour) to ensure sufficient convergence.

It is noteworthy that such computations can be performed at a given (x, t)

location, t ≥ x/c∞, independently with no information required at neighboring

locations. This is in stark contrast to time-stepping schemes, in which the electric

field can only be obtained at time level tn = n∆t after all previous time levels have

been computed. Unfortunately, it is not clear a priori what choice of N is required to

ensure convergence to within a given precision, which is one of the drawbacks to this

method. For a value of N that is too large, evaluation of the impulse response over

many values of (x, t) will be time-consuming. Additionally, we have found in practice

that it is helpful to scale the quadrature nodes by either time s = z/t, or by the

delayed time s = z/(t − t∞), where t∞ = x/c∞ is the arrival time of the wavefront.

The correct choice of both N and the method of scaling is determined by the size of

x, and the range of time over which the solution is to be computed.

2.2 Asymptotic Behavior

We now present an asymptotic investigation of the electric field (2.7) at the wavefront

for both short and large depths into the H-N medium. The results will be presented

for the general (H-N) case, but are also valid for the limiting cases of the Cole-Cole

and Cole-Davidson models.

2.2.1 Short-depth Behavior

We will first ascertain the nature of the wavefront after a short depth into the H-N

medium, which is characterized by t ≈ x/c∞ � τ , where x = O(c∞τ) is referred to

as the time-domain skin depth [33]. We will also refer to this asymptotic regime in

terms of θ = c∞t/x, which satisfies θ ≈ 1 near the wavefront. If in equation (2.7)

we substitute s = z/t, and assume t � τ , we see that the phase of the wavefront
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behavior will be determined by the infinite-frequency approximation for q(sτ), which

is given by retaining the first term of the expansion of (2.8) for large sτ , as

q(sτ) ≈ 1 +
r − 1

2
(sτ)−αβ +O

(
(sτ)−α(β+1)

)
, (sτ)� 1. (2.13)

This approximation is inserted into equation (2.7), and upon setting F (s) = 1 we

obtain the leading order behavior of the impulse response at the wavefront

Ψ(x, t) ≈ Ψ∞(x, t) =
1

2πi

∫ ζ+i∞

ζ−i∞
es(t−

x
c∞ )e−Ax(sτ)1−αβds, (2.14)

with A = (r−1)
2c∞τ

. The representation shown has been deliberately written in a factored

form, to distinguish between two prominent features of the early impulse response.

The argument of the first exponential factor is a hyperbolic term, which shows that

the wavefront will propagate with the infinite frequency speed c∞. The additional

exponential factor will act as a smoothing operator on the incoming pulse. Notice

that the parameters α and β only appear as a product αβ in this approximation; thus

the behavior of the electric field in the skin depth cannot be discerned as that of a

Cole-Cole, Cole-Davidson, or Havriliak-Negami medium.

To elaborate on the smoothing effects of the early impulse response, we compute

the early wavefront response for the electric field due to an incident pulse f(t) by first

defining an effective pulse g(x, t), which in the Laplace domain is given as

G(x, s) = F (s)e−Axs
1−αβ

. (2.15)

Now, since L−1 {exp−sx/c∞} = δ(t−x/c∞), we see that the short depth electric field

satisfies E(x, t) ≈ g(x, t− x/c∞). Furthermore, differentiation of (2.15) with respect

to x shows shows that Gx + As1−αβG = 0, so that g(x, t) satisfies a fractional-order

wave equation

AD1−αβ
t g + gx = 0, x > 0, t > 0, (2.16)
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Figure 2.3 Validation of the infinite-frequency approximation of the Havriliak-
Negami impulse response, at x = 0.0002c∞τ and α = 0.6. The time is translated, so
that the origin is at t = x

c∞
.

with boundary condition g(0, t) = f(t). A precise definition of the fractional deriva-

tive D1−αβ
t g is deferred to Chapter 3. The effective pulse g(x, t) will be infinitely

smooth for αβ < 1, as can be seen by

lim
t→0

∂ng

∂tn
= lim

s→+∞
sn+1G(x, s) = lim

s→+∞
F (s)e−Axs

1−αβ
= 0, n > 0. (2.17)

This result was shown in [30] to hold for the C-C model, and now can be seen

to generalize to the H-N model. In the limit αβ → 1, the behavior in a Debye

medium is recovered, and the solution to (2.16) will be g(x, t) = f(t)e−Ax (hence,

E(x, t) ≈ f(t − x/c∞)e−Ax), which shows E(x, t) will not be infinitely smooth, but

will instead inherit any discontinuities in the signal f(t).
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In contrast to the exact impulse response, the short-depth approximation Ψ∞

can be successfully computed using the method of steepest descents. This is due

to the simpler expression for the phase, which can be used to obtain a closed form

representation of the contour. The saddle point is obtained by setting dφ/ds = 0,

where φ = s(t− x/c∞)− Ax(sτ)1−αβ is the phase of equation (2.14). This results in

s∗ =
1

τ

(
(1− αβ)Ax

t− x/c∞

) 1
αβ

=
1

τ

(
r − 1

2

(1− αβ)

θ − 1

) 1
αβ

(2.18)

Notice that we have a moving saddle point, as it is inversely proportional to (θ − 1);

thus we first make the change of variables sτ = zλ in equation (2.14), where λ =

(θ − 1)−1/αβ will be a large positive parameter (recall that θ = c∞t/x ≈ 1 at the

wavefront). This will ensure that the main contribution of the integral will remain

localized near the saddle point, which is now given as z∗ = ((1− αβ)(r − 1)/2)
1
αβ

and is now stationary. Making this change of variables in equation (2.14) produces

Ψ∞(x, t) =
λ

2πiτ

∫ ζ+i∞

ζ−i∞
exp

[
λ

(
t

τ
− x

c∞τ

)(
z − r − 1

2
z1−αβ

)]
dz. (2.19)

After substituting the second order approximation of the phase about z = z∗,

φ ≈ λ

(
t

τ
− x

c∞τ

)(
− αβ

1− αβ
z∗ +

αβ

2z∗
(z − z∗)2

)
+O

(
(z − z∗)3

)
(2.20)

we integrate the resulting expression to obtain the leading order term of the asymp-

totic series

Ψ∞ ≈
1

τ

√
z∗λc∞τ

2παβ(c∞t− x)
e−

αβ
1−αβ z

∗λ(t− x
c∞

)

(
1 +O

(
1

λ

))
. (2.21)

Figures 2.3 and 2.4 show the saddle point approximation for x = 0.0002c∞τ, r = 75,

and αβ = 0.6, 0.8 respectively, compared to the exact impulse response, obtained

using the hyperbolic Bromwich contour (2.11). We also show the result of directly

evaluating (2.14) along the steepest descent contour, which is detailed below. Note
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Figure 2.4 Validation of the infinite-frequency approximation of the Havriliak-
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that the relative amplitude of the impulse response is heavily dependent upon αβ,

and approaches infinity for αβ = 1; this reflects the fact that for the Debye response,

Ψ∞ = δ(t − x/c∞)e−Ax. Additionally, note that the approximations show better

agreement with the exact response for smaller αβ; this is because λ will be larger

for smaller αβ, which makes the saddle point approximation (2.21) converge more

rapidly.

In order to directly evaluate the approximate impulse response as in Figures

2.3 and 2.4, we first find a parametric representation of the steepest descent contour.

This is most easily accomplished in polar form. We first define sτ = ρeiσ, and then

note from equation (2.18) that both s∗ and φ(s∗) will be real, so that the steepest
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Figure 2.5 Steepest descent contour for the phase of the short-depth approximation
of the H-N impulse response (2.14). Contours are shown for 1 < θ ≤ 3, since the
asymptotic regime corresponds to θ ≈ 1.

descent contour satisfies =[φ] = 0. This will lead to the following expression

ρ(σ) = s∗
[

sin ((1− αβ)σ)

(1− αβ) sinσ

] 1
αβ

, −π < σ < π. (2.22)

For the sake of simplicity, we define the function

S(σ; a, b) =
b sin (aσ)

a sin bσ
, S(0; a, b) = 1 (2.23)

so that ρ(σ) = s∗S(σ; 1 − αβ, 1)1/αβ, and ρ(0) = s∗. This contour is shown in

Figure 2.5 for comparison to Figure 2.1. The contours are only of interest for θ ≈

1, since this is where the approximation (2.14) is asymptotically valid. Using the

parametric representation and the expression (2.23), the short-depth approximation
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of the impulse response takes the form

Ψ∞ =
1

2πτ

∫ π

−π
exp

[
−
(
t

τ
− x

c∞τ

)
ρ(σ)αβS(σ;αβ, 1)

]
ρ(σ)S(σ;αβ, 1− αβ)dσ.

(2.24)

Approximation of this integral can be accomplished using the trapezoidal rule, which

yields exponential convergence,

Ψ∞ =
1

2(N + 1)τ

N∑
k=−N

exp−
[(

t

τ
− x

c∞τ

)
ρ(σk)αβS(σk;αβ, 1)

]
ρ(σk)S(σk;αβ, 1−αβ),

(2.25)

where σk = kπ
N+1

.

2.2.2 Large-depth Behavior

We now examine the behavior of the wave front for depths satisfying x � c∞τ . In

this region, we will take t ≈ x/cs � τ , or alternatively θ ≈ c∞/cs. This regime will

correspond to the s = 0 limit of (2.8); thus

q(sτ) ≈
√
r

(
1− β r − 1

2r
(sτ)α

)
+O

(
(sτ)2α

)
, |sτ | � 1 (2.26)

where
√
r = c∞/cs. The leading order large-depth approximation of the impulse

response will then be

Ψ(x, t) ≈ Ψ0(x, t) =
1

2πi

∫ ζ+i∞

ζ−i∞
es(t−

x
cs

)eBx(sτ)1+αds (2.27)

with B = β r−1
2rcsτ

. To accomplish the evaluation of Ψ0(x, t), we again compute the

inverse Laplace transform along a steepest descent contour in the complex s domain.

Now the phase is φ = s
(
t− x

cs

)
+Bx(sτ)1+α, and the saddle point will be

s∗ =
1

τ

(
1− cst

x

β r−1
2r

(1 + α)

) 1
α

=
1

τ

(
1− θ√

r

1 + α

2r

β(r − 1)

) 1
α

. (2.28)

From this expression, we see that for t < x/cs, the saddle point will be real which

will make the phase real as well. We first make the change of variables sτ = λz, with
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λ = (1 − θ/
√
r)1/α; after substituting the second order approximation of the phase

about z = z∗,

φ ≈ − x

csτ

(
1− θ√

r

)1+1/α(
α

1 + α
z∗ +

α

2z∗
(z − z∗)2

)
+O

(
(z − z∗)3

)
(2.29)

where z∗ = (β(1− α)(r − 1)/2r)−1/α. Integration of this expression yields

Ψ0 ≈
1

τ

√
z∗λcsτ

2πα(x− cst)
e−

α
1+α

z∗λ( x
cs
−1)

(
1 +O

(
1

λ

))
. (2.30)

Unfortunately, this expression is no longer valid near t = x/cs, since λ→ 0, and

therefore the asymptotic series diverges.

Fortunately, we can still evaluate (2.27) by finding a parametric form of the

steepest descent contour, as in the case of the shallow-depth response, and discretize

the integral. By setting sτ = ρeiσ, and setting the imaginary part of the phase to

zero, we obtain the parametric form

ρ(σ) = s∗S(σ; 1, 1 + α)
1
α , − π

1 + α
< σ <

π

1 + α
, (2.31)

where the S(σ; a, b) is again given by equation (2.23), and the interval is taken to

ensure that the expression remains real for t < x/cs. Note that this expression

satisfies ρ(0) = s∗.

When t > x/cs, the saddle point vanishes, since it passes into the branch cut

on the negative real s−axis; however the same expression (2.31) will still define a

steepest descent contour. It is merely the domain that must be changed, which is

instead comprised of the disjoint intervals σ ∈ (−π, π/(1 + α)) ∪ (π/(1 + α), π).

On these intervals, sin ((1 + α)σ) < 0, which makes S(σ; 1, 1 + α) < 0; but this

sign change is compensated by an additional change in the numerator of s∗ due to

1− cst/x, and therefore the parametric representation remains real. The two disjoint

intervals in σ form a cusp at the origin in the complex s domain, which corresponds to

ρ(±π) = 0. The two regimes, namely that with the saddle point, and that with cusps,
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Figure 2.6 Steepest descent contour of the large-depth approximation, with
increasing values of θ = c∞t

x
. The separatrix (dotted line) is given by s =

ρe±πi/(1+α), ρ > 0, and corresponds to t = x/cs.

are separated by the steepest descent contour along which t = x/cs, as is shown in

Figure 2.6. This latter curve will be comprised of the two rays sτ = ρe±πi/(1+α), and

must therefore be treated separately. Note that this behavior in the steepest descent

contours is similar to those of the exact impulse response, shown in Figures 2.1 and

2.2.

We can now express the approximate impulse response for t 6= x/cs by replacing

sτ = ρ(σ)eiσ, and retaining the real part of the resulting integral; the imaginary part

is odd with respect to the imaginary axis, and will therefore vanish. After some
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Figure 2.7 Behavior of the contour near the origin. The behavior of the contours
for θ > cst

x
, θ = cst

x
and θ < cst

x
are shown. The separatrix (dotted line) is given by

s = ρe±πi/(1+α), ρ > 0, and corresponds to t = x/cs.

manipulation, we obtain

Ψ0(x, t) =
1

2πτ

∫
exp

[(
t

τ
− x

csτ

)
ρ(σ)αS(σ;α, 1)

]
ρ(σ)S(σ;α, 1 + α)dσ, (2.32)

where the endpoints are chosen depending on the sign of t− x/cs. This integral can

be approximated with exponential accuracy using the trapezoidal rule,

Ψ0(x, t) ≈ 1 + α

2Nατ

N∑
k=−N

exp

[(
t

τ
− x

csτ

)
ρ(σk)αS(σk;α, 1)

]
ρ(σk)S(σk;α, 1 + α),

(2.33)
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where

σk =


k
N

π
1+α

, t < x
cs

π − k
N

απ
1+α

t > x
cs

(2.34)

The expression at the point t = x/cs is actually simpler, and can be evaluated

analytically. At this point, the saddle point vanishes, and the expression (2.31) is

no longer valid; the phase simplifies to φ = Bx(sτ)1+α, which can be made real along

the rays arg s = ±π/(1 + α). The approximate impulse response is thus given by

Ψ0(x, t = x/cs) =
1

2πi

∫ ζ+i∞

ζ−i∞
eBx(sτ)1+αds

=
1

2πi

[
e−γπi

∫ 0

−∞
e−Bxv

1+α

dv + eγπi
∫ ∞

0

e−Bxv
1+α

dv

]
=

1

π
sin (γπ) (Bx)−γ

∫ ∞
0

e−v
1+α

dv

=
1

Γ (γ) Γ (1− γ)
γ (Bx)−γ

∫ ∞
0

e−uuγ−1du

=
γ

Γ (1− γ)
(Bx)−γ , (2.35)

where γ = 1
1+α

, and we have used the identity Γ(1− z)Γ(z) = π/ sin (πz).

The approximate impulse response is compared in Figures 2.8 and 2.9 for the

same parameters as Figures 2.3 and 2.4, with x = 100c∞τ . Once again, the hyperbolic

contour is used to evaluate the exact impulse responses Ψ. As illustrated in Figures

2.8 and 2.9, the approximate impulse response clearly improves as α increases, but in

both cases the peak of the exact impulse response is underestimated. The saddle point

approximation is not shown, since it does not provide an accurate approximation for

t ≥ x/cs.
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Figure 2.8 Validation of the large-depth approximation of the H-N Impulse
Response, at x = 100c∞τ , and (α, β) = (0.6, 0.75).
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CHAPTER 3

THE COLE-COLE DIELECTRIC MODEL

3.1 Introduction

In this chapter we will develop a means of implementing the Cole-Cole model using

FD-TD methods. The Cole-Cole model introduces a fractional power of the temporal

frequency to describe the dielectric relaxation, which leads to a time-domain fractional

differential equation (FDE) for the constitutive law in Maxwell’s equations. From a

numerical standpoint, this is of consequence, as fractional derivatives are defined by

convolution integrals which are nonlocal in time and expensive to evaluate.

Despite these difficulties, the Cole-Cole model has recently received a good

deal of attention [37], [26], [22], [31], [36]. In most of the existing formulations, the

underlying idea is to use a basis of exponential functions e−ξjt to approximate the

slowly decaying kernelKα(t) = t−α/Γ(1−α) in the fractional derivative. This amounts

to approximating a Cole-Cole term with a number of Debye terms. The strengths and

locations of the poles are determined using various optimization methods, which are

applied in the frequency domain. Consequently, there is no a priori information about

the accuracy of the resulting Cole-Cole approximation in the time domain. In fact,

such frequency domain constructions cannot address the singular nature of Kα(t) for

t→ 0+, which is crucial in accurately capturing the polarization dynamics.

There will be two sources of error in any FD-TD approximation of the Cole-Cole

model: the error in approximating the Cole-Cole term, which is essentially controlled

by the number of Debye terms N ; and the standard discretization error introduced

by the FDTD method, which is controlled by the size of the time step ∆t, and the

computational time T = Nt∆t. In principal, an optimal implementation would then

place these two sources on the same order, (in the case of FD-TD, the discretization

25
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error is second order in space and time). However, this implied relationship between

N = N(∆t, T ) has not yet been established in the literature. Herein we will develop

a means to impose upon the Cole-Cole term approximation an accuracy of O(∆t2),

uniformly over a preset computational interval [0, T ]. Additionally, an explicit proof

of stability will be given for our scheme, which will show that the standard CFL

condition is preserved. Our analysis can be extended to the methods of [26], [37],

[22], and [36], and it is likely that the same is true of [31].

Concurrently several related mathematical models involving fractional ordinary

differential equations have been explored: fractionally damped dynamic systems [42];

porous media with singular memory [16]; and fractional viscoelasticity [11]. These

methods all utilize various quadrature schemes to derive a sum of exponentials (i.e.,

Debye terms) approximation in the time domain for the kernel Kα(t). The use of

quadrature to obtain this approximation was first put forth by Yuan and Agrawal [42],

and successive improvements have been made in [16], [11]. In particular, Diethelm’s

construction [11] exhibits high accuracy levels in the approximation of fractional

ODEs. But recent work by Beylkin and Monzón [3] has made possible a sum of

exponentials approximation for singular non-oscillatory functions, which is minimal

in the number of terms required, and maintains a preset tolerance level ε over a desired

time interval.

In order to examine the accuracy of an approximation for the fractional deriva-

tive, we must first define some criterion that a given approximation must satisfy.

Thus we ask:

given a function K(t) over an interval [δ, T ], what is the optimal choice for a sum of

exponentials approximation of K, that has a uniformly bounded absolute error ε?

That is, we seek (wj, ξj) such that

max
δ≤t≤T

∣∣∣∣∣K(t)−
M∑
j=1

wje
−ξjt

∣∣∣∣∣ < ε. (3.1)
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Clearly the advantage of Beylkin’s approach is that we can simultaneously maximize

the accuracy of the approximation of K(t), and minimize the number of exponentials

required, which in this sense is optimal. Li [25] has made a construction of this type for

fractional integrals, but imposes the condition with T =∞; hence the approximation

will be suboptimal, as N will be excessively large for approximations that need only

be valid for a finite time.

We must point out that in using a sum of exponentials to approximate Kα(t),

the representation will inherently break down in some interval t ∈ [0, δ] containing

the origin, where Kα(t) becomes singular. This will require a separate treatment in

this region, which has a bearing on the accuracy of the resulting numerical scheme.

3.2 Fractional Derivatives

We first study independently the numerical application of fractional derivatives, and

their use in fractional differential equations (FDEs). The polarization law for the

Cole-Cole model can be posed as an FDE, which follows from the taking the Laplace

transform of equation (1.6),

P̂ (x, s) = ε0χ̂(s)Ê(x, s) (3.2)

where

χ̂(s) =
εs − ε∞

1 + (sτ)α
. (3.3)

Upon multiplying by the denominator, and inverting to the time domain, we produce

the polarization law

ταDα
t P + P = ε0(εs − ε∞)E, t > 0, (3.4)

The term Dα
t P is the fractional derivative of P , of order α, and can be interpreted

in several related, but different manners. Most commonly the Caputo definition of
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the fractional derivative is taken, which preserves the well-posedness of the Cauchy

problem [10] by introducing initial data in terms of P , rather than its fractional

derivative. This is accomplished by splitting the term sα, so that

Dα
t P = L−1{sαP̂} = L−1{(sα−1)(sP̂ )}

= L−1{sα−1} ∗ L−1{sP̂} =
t−α

Γ(1− α)
∗
[
dP

dt
+ P (x, 0)

]
, (3.5)

where ∗ denotes convolution in time. For the polarization, we can (without loss of

generality) take P (x, 0) = 0, so that the Caputo fractional derivative of order α is

defined as

Dα
t P =

∫ t

0

Kα(u)
∂P

∂t
(x, t− u)du, (3.6)

where Γ(·) is the gamma function, and where the kernel of the fractional derivative

is given by

Kα(t) =
t−α

Γ(1− α)
, 0 < α < 1. (3.7)

For now, we suppress the x-dependence of P , since it does not affect the results.

We will also compute the numerical approximation of the fractional derivative on a

uniform grid in time. If a straightforward approach is used to discretize the integral

(i.e., trapezoidal rule), then the computation of the fractional derivative at each time

level will be of the form

(Dα
t P )n = h

n−1∑
m=0

Km
α Ṗ

n−m, (3.8)

where h is the step size, and Ṗ n = dP
dt

(nh). This inevitably leads to a bottleneck, since

the number of terms that must be summed grows at each time step; thus each time

steps takes longer to compute than the previous time step! The computational time

required to compute the fractional derivative over Nt time steps will thus be O(N2
t ).

This can be avoided by using fast convolution techniques [15], [20], which replace
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the convolution kernel with an approximation that is used to localize the convolution

procedure.

In order to make use of the fast techniques (see, e.g. [25], [20]) for convolution,

we observe that Kα(t) in equation (3.7) is a non-oscillatory, decaying function; thus

it can be approximated using a sum of real decaying exponentials, with the approx-

imation maintaining a precision ε over some interval, δ ≤ t ≤ T . The region [0, δ]

must be treated separately, since it contains the singularity of Kα(t) and therefore the

exponentials approximation cannot hold there. We will judiciously choose δ = q∆t,

with q a small integer (i.e., 1 and 2), so that the endpoints of the integration coincide

with the temporal grid points. The sum of exponentials approximation will then be

of the form

KN
α (t) =

N∑
j=1

wje
−yjt, q∆t ≤ t ≤ T. (3.9)

Once such an approximation is obtained, the fractional derivative can be computed

efficiently in O(N) time at each time step, where N is much smaller than the number

of time steps Nt = T/h, and in many cases is given by the relation N = O(logNt).

Thus, these fast algorithms will compute the fractional derivative over Nt time steps

in O(Nt logNt) time. The fractional derivative at time tn+1 = (n + 1)h is therefore

comprised of a local and history part,

(Dα
t P )n+1 = ψn+1

` + ψn+1
h , (3.10)

where

ψn+1
` =

∫ qh

0

Kα(u)
dP

dt
(tn+1 − u)du, (3.11)

ψn+1
h =

∫ tn+1

qh

KN
α (u)

dP

dt
(tn+1 − u)du. (3.12)

The parameter q serves to produce a hybridization between the classical convolution

approach (which corresponds to q = n + 1), and a purely fast convolution approach
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(q = 0). The optimal choice of q is made when the order of convergence of both

contributions to the fractional derivative are of the same order; as we shall show

below, it turns out to be q = 2.

3.2.1 Local Approximation

The local contribution ψ` is discretized by replacing P (tn+1−u) with an interpolating

polynomial, and integrating the resulting expression analytically. In the case that P (t)

is a known function, we consider the case q = 1, and approximate Ṗ directly over the

interval [0, h] with the linear interpolant

Ṗ (t− u) =
(

1− u

h

)
Ṗ n+1 +

u

h
Ṗ n +O(h2), 0 < u < h, (3.13)

and integrate this approximation analytically. This results in

ψn+1
` =

∫ h

0

u−α

Γ(1− α)

[(
1− u

h

)
Ṗ n+1 +

u

h
Ṗ n
]
du

=
h−α

Γ(3− α)

[
Ṗ n+1 + (1− α)Ṗ n

]
. (3.14)

However this method only applies to cases when P is a known function; i.e., if we are

simply computing a fractional derivative.

In the consideration of fractional differential equations, we instead compute

the fractional derivative of an unknown quantity. Thus, the local contribution ψ`

is discretized by replacing P (tn+1 − u) (rather than its derivative) with an interpo-

lating polynomial through the points P n+1−k for k = 0, 1, . . . q, and integrating the

remaining expression analytically. This will result in a family of approximations of

the form

ψn+1
` =

q∑
k=0

AqkP
n+1−k. (3.15)

We will derive the coefficients Aqk using interpolating polynomials, so that the error

of our approximation is given by the following
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Lemma 1 For q = 1, 2, . . ., define the interpolating polynomial of order q for P (t−u),

passing through the points P (t− jh), j = 0, 1, . . . q. Then, the interpolant is accurate

to order hq+1, and for P ∈ Cq+1[t− h, t], we have∫ qh

0

u−α

Γ(1− α)

dP

dt
(t− u)du =

q∑
k=0

AqkP
n−k +O(hq+2−α). (3.16)

The local truncation error will then be O(hq+1−α).

Proof 1 An interpolating function of P (t−u) through q+1 points P n, P n−1, . . . P n−q,

where t = nh, will be of the form

P (nh− u) =

q∑
j=0

ajq(u)P n−q + fq(u;h)
dq+1P

dtq+1
(ξ), (3.17)

where ajq are polynomials of degree q or less; fq is a homogeneous polynomial of

degree q + 1, satisfying fq(u;h) = hq+1f(u
h
; 1); and ξ ∈ [0, qh]. Upon differentiating

with respect to u, multiplying by u−α and integrating over [0, qh] we derive a numerical

scheme, and retain the error term. Thus, the error will be of the form∫ qh

0

u−αf ′(u;h)du = hq+2−α
∫ q

0

v−αf ′(v; 1)dv = Chq+2−α. (3.18)

The local truncation error will be one order less than this, giving the indicated con-

vergence rate of O(hq+1−α).

Thus the resulting overall accuracy is less than second order for the q = 1

method. Since the FD-TD method is a second order accurate scheme, we are only

interested in q = 1, 2. In the case q = 1, we proceed by replacing Ṗ with a standard

finite difference approximation over the interval [0, h], and therefore

ψn+1
` =

∫ h

0

u−α

Γ(1− α)
Ṗ (tn+1 − u)du

=
1

Γ(1− α)

∫ h

0

u−α
P n+1 − P n

h
du

=
h−α

Γ(2− α)

(
P n+1 − P n

)
, (3.19)
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so that for the case q = 1, the coefficients are given as

A1
0 = −A1

1 =
h−α

Γ(2− α)
. (3.20)

The important point to note is that because the derivative dP
dt

(t− u) is being repre-

sented with function values P (tn), P (tn−1) etc. (rather than dP
dt

at the same locations),

there is a loss of accuracy. Thus, the standard finite difference approximation does

not produce a second order approximation. For the case q = 2, and the interpolating

polynomial is a parabola through P n+1, P n and P n−1, so that

Ṗ (tn+1−u) ≈ 3P n+1 − 4P n + P n−1

2h
+−uP

n+1 − 2P n + P n−1

h2
+O(h2), 0 ≤ u ≤ 2h.

(3.21)

Upon inserting this approximation into equation (3.11), we obtain the local contri-

bution

ψn+1
` =

∫ 2h

0

u−α

Γ(1− α)
Ṗ (tn+1 − u)du

=
1

Γ(1− α)

∫ 2h

0

u−α
(

3P n+1 − 4P n + P n−1

2h

)
− u1−α

(
P n+1 − 2P n + P n−1

h2

)
du

=
(2h)−α

Γ(3− α)

[
(2 + α)

(
P n+1 − P n

)
+ (2− 3α)

(
P n − P n−1

)]
, (3.22)

which indicates that the coefficients are now given as

A2
0 =

(2h)−α

Γ(3− α)
(2 + α) A2

1 =
(2h)−α

Γ(3− α)
(−4α) A2

2 =
(2h)−α

Γ(3− α)
(3α− 2) (3.23)

3.2.2 History Approximation

The history contribution can similarly be written as a sum of auxiliary variables;

using the definition (3.9) of KN
α (t), we have

ψn+1
h =

N∑
j=1

wjφ
n+1
j , (3.24)
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where

φn+1
j =

∫ (n+1)h

qh

e−yju
dP

dt
(tn+1 − u)du, j = 1, 2, . . . N. (3.25)

This construction is still general, as it will hold for any choice (wj, yj) that forms an

approximation KN
α ; we postpone an explicit choice of these parameters to first attend

to the theoretical matters. With some standard manipulations, one can show that φj

satisfies both a recurrence relation, as well as an ordinary differential equation:

φj(tn+1) = e−yjhφj(tn) + e−yjqh
∫ h

0

e−yju
dP

dt
(tn+1−q − u)du (3.26)

φj + yj
dφj
dt

= e−yjqh
dP

dt
. (3.27)

These expressions can be used to derive an appropriate rule using either exponential

time differencing, or the standard finite differences (trapezoidal rule) respectively.

Both of these schemes are of the form

φn+1
j = djφ

n
j + cj

(
P n+1−q − P n−q) , j = 1, 2 . . . N. (3.28)

For the trapezoidal rule, discretization results in

dj =
2− yjh
2 + yjh

, cj = e−yjqh
2

2 + yjh
, (3.29)

and is known to converge with second order accuracy. The corresponding exponen-

tial differences rule can be derived by replacing Ṗ with a standard finite difference

approximation, and integrating the exponential. Thus

dj = e−yjh, cj = e−yjqh
1− e−yjh

yjh
. (3.30)

We now show that equation (3.28) with coefficients defined by (3.30) produces a

second order accurate scheme. Comparison with equation (3.26) shows that dj = e−yjh

is the exact choice, and so the only source of error is from the approximation of the
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integral; thus we define the error

L[φj] =

∫ h

0

e−yju
dP

du
(tn − u)du− 1− e−z

z
(P n − P n−1). (3.31)

Lemma 2 For P ∈ C2[t− h, t], we have

L[φj] = Cj
zjh

2

12

d2P

dt2
(t− ξ), (3.32)

where zj = yjh, and Cj = min (1, 6(zj)
−2). Therefore the local truncation error of

equation (3.28) with coefficients defined by (3.30) is second order.

Proof 2 We first construct the linear interpolant for P (t − u) through the points

P (t), P (t− h), and retain the error term. Differentiation of the interpolant produces

the standard finite difference approximation of dP
dt

dP

dt
(t− u) =

P (t)− P (t− h)

h
+

(
h

2
− u
)
d2P

dt2
(t− ξ), 0 ≤ u ≤ h (3.33)

for some ξ ∈ [0, h]. Multiplying by e−yju and integrating results in (3.31), which is

equal to

L[φj] =
d2P

dt2
(t− ξ)

∫ h

0

e−yju
(
h

2
− u
)
du =

d2P

dt2
(t− ξ)γ(zj)h

2, (3.34)

where

γ(z) =
1

2z2

(
(2 + z)e−z − (2− z)

)
. (3.35)

Over the positive real line, the function γ(z) is concave, satisfying γ(0) = γ(∞) = 0,

and attaining a global maximum at γ(2.688) = 0.0697. Expanding γ(z) for large and

small arguments, we have the uniform upper bound

γ(z) ≤ z

12

 1 0 < z ≤
√

6

6
z2

z >
√

6
(3.36)
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which implies equation (3.32). The local truncation error of equation (3.28) is defined

as

1

zj

(
φn+1
j − e−zjφnj − e−qzj

1− e−zj
zj

(P n+1−q − P n−q)

)
=
e−qzj

zj
L[φj], (3.37)

and is therefore second order accurate in time.

The full numerical approximation of the fractional derivative will then consist

of two steps. First the auxiliary variables φj are updated

φn+1
j = e−yjhφnj + e−yjqh

(
1− e−yjh

yj

)
P n+1−q − P n−q

h
, j = 1, 2, · · ·N, (3.38)

then the fractional derivative can be updated

(Dα
t P )n+1 =

q∑
k=0

AqkP
n+1−k +

N∑
j=1

wjφ
n+1
j . (3.39)

For comparison, we also consider the q = 0 implementation. This is equivalent to

directly substituting Kα(t) = KN
α into equation (3.6), so that

[Dα
t P ]n+1 =

N∑
j=1

wjφ
n+1
j (3.40)

and where φj are still given by (3.28), with coefficients from either (3.29) or (3.30).

3.3 Approximation of KN
α (t)

All of the above results hold in general for any approximation KN
α (t); now we make

such a construction as given by Beylkin and Monzón [3], which exhibits explicit

dependence on the time interval of interest (i.e., the length of the FDTD simulation).

Given a specified error tolerance ε and a time interval [∆t, T ], the approximation is

constructed as follows:

• Set z− = 1
α

(log ε+ log Γ(α + 1)).
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• Set z+ = log(− α
∆t

log(ε)) + 1 + 1
2α

.

• Set h = 2π
1+α−log ε

, and N0 = d z+−z−
h
e.

• For j = 1, · · ·N0, define zj := z− + jh and

wj :=
h

π
sin (πα)eαzj , yj := ezj . (3.41)

Then we have ∥∥Kα(t)−KN0
α (t)

∥∥
∞ < ε, t ∈ [∆t, T ]. (3.42)

This construction produces a quadrature that maintains a uniform accuracy ε

over the computation interval t ∈ [∆t, T ]; it is not optimal however, as the number

of nodes and weights N0 can still be reduced without sacrificing the overall accuracy.

In fact, the numerical rank of the matrix formed by

Vmn = e−ymtn , tn ∈ [∆t, T ] (3.43)

will determine the optimal number of nodes. In this case the rectangular matrix V

contains singular values that decay exponentially, and so the final number of nodes

N < N0 will grow logarithmically with the accuracy, and the time step,

N ∼ log
1

ε
+ log

T

∆t
. (3.44)

A variety of methods have been introduced in recent years to compress this ma-

trix [41],[27]; Beylkin’s method consists of choosing tn = n∆t which makes V a

Vandermonde matrix, and using a modified version of Prony’s method to perform

the compression, while maintaining precision ε. We have found comparable results

by constructing Chebyshev interpolants on subintervals of time, which were used

to construct the approximations in Figures 3.3 and 3.4. Once the yj’s have been
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compressed, the weights are recalculated by solving the least squares problem for

(3.42) at the points tn.

Since the exponents yj will vary over several orders of magnitude, as observed

in Figure 3.3, the resulting ODEs are inherently stiff. It is for this reason that we use

exponential time differencing, which preserves the amplification factors, and reduces

the numerical dissipation. However the standard approximation using the trapezoidal

rule can also be implemented.

We now compare the current method of computing the fractional derivative

with several of those appearing in the current literature. In order to unify the ensuing

discussion, we define the fractional derivative kernel by its Laplace transform

Kα(t) =
t−α

Γ(1− α)
=

sin (πα)

π

∫ ∞
0

yα−1e−ytdy, t > 0, 0 < α < 1, (3.45)

where we have used the Euler reflection principle Γ(α)Γ(1 − α) = π/ sin (πα). The

fractional derivative (3.6) can now be rewritten as

Dα
t P =

sin(πα)

π

∫ ∞
0

yα−1φ(t; y)dy, (3.46)

where

φ(t; y) =

∫ t

0

e−y(t−t′)dP

dt′
dt′. (3.47)

The convolution is now written in terms of a continuous distribution of exponentials,

and is therefore a continuous analog to equation (3.24); if we view y as the inverse

relaxation time, then we see that φ is composed of a continuum of relaxation times.

Holding y fixed, and differentiating with respect to time, we can now derive an ODE

that governs the behavior of φ

dφ

dt
+ yφ =

dP

dt
. (3.48)
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Once a suitable quadrature is introduced, discretization of the integral (3.47) will

reduce the continuum to a discrete set of relaxation times, so that

Dα
t P =

N∑
j=1

wjφj, φj = φ(t; yj), (3.49)

which is the same equation as (3.24) with q = 0. Thus, the following approximation

has been made implicitly

t−α

Γ(1− α)
≈

N∑
j=1

wje
−yjt. (3.50)

The determination of weights and nodes amounts to choosing a certain integral

representation for the left hand side of equation (3.50), and approximating it with an

appropriately chosen quadrature; the above construction (3.41) is a particular choice.

The idea to obtain the exponentials using quadrature is not new; Yuan and

Agrawal first made a change of variables y → y2 in equation (3.45), and then defined

the weights and nodes using an N -point Gauss-Laguerre quadrature

wj :=
2

π
sin (πα)wGLj exp (xGLj )(xGLj )2α−1, yj := xGLj , j = 1, 2, · · ·N. (3.51)

The use of y2 instead of y has the effect of distributing the nodes so that they

span a larger region of the integration domain (0,∞), which has a dualistic relation

to the range of time that is resolved. Despite their attempt, it has since been

discovered [11] the points don’t span a large enough range for most time stepping

computations of interest. Another issue is of deeper concern, which is that the

Laguerre quadrature fails to account for the asymptotic behavior of the integrand,

particularly in the singular limit y → 0. This singularity can be treated by using

generalized Laguerre Quadrature; i.e., with the weight function w(x) = x2α−1e−x

instead of just an exponential; this is what we show in Figure 3.1.

In order to mitigate the slow decay of the integrand for large y, Lu and Hanyga

[16] have proposed splitting the integral at some point c > 0 (usually, c = 1), and
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Figure 3.1 Distribution of weights and nodes with N = 30, and α = 0.6. All nodes
and weights are transformed, so that t−α/Γ(1 − α) =

∑
wje

−yjt. Note the effects of
clustering nodes.

evaluating the first part containing the singularity using Gauss-Jacobi quadrature

with weight function w(0,2α−1)(x) = (1 + x)2α−1, and the second with a shifted

Gauss-Laguerre quadrature and an additional acceleration term to accommodate the

behavior at infinite. That is, if we denote the NGJ nodes obtained from Gauss-Jacobi

quadrature as (wGJj , xGJj ), then

w
(1)
j :=

sin (πα)

π

( c
2

)2α

wGJj , y
(1)
j := c

1 + xGJj
2

,

NGJ∑
j=1

wje
−y2j t ≈

∫ c

0

y2α−1e−y
2tdy. (3.52)
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Figure 3.2 Absolute error in using an N = 30 term sum of exponentials
to approximate the convolution kernel t−α/Γ(1 − α), with α = 0.6 using the
Yuan-Agrawal and Lu-Hanyga methods.

Similarly, the NGL-point Gauss-Laguerre weights and nodes (wGLj , xGLj ) are used to

construct

w
(2)
j :=

2

π
sin (πα)wGLj exp (xGLj )(xGLj + c)2α−1, y

(2)
j := c+ xGLj , (3.53)

NGL∑
j=1

w
(2)
j e−(y

(2)
j )2t ≈

∫ ∞
c

y2α−1e−y
2tdy, (3.54)

g :=
2

π
sin (πα)

∫ ∞
c

y2α−3dy −
NGL∑
j=1

w
(2)
j (y

(2)
j )−2 . (3.55)
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The transformed weights and nodes, along with the extraction term g lead to the

approximation

Dα
t P =

NGJ∑
j=1

w
(1)
j φ

(1)
j +

NGL∑
j=1

w
(2)
j φ

(2)
j + g

∂P

∂t
. (3.56)

The determination of NGJ , NGL, and c ultimately controls the accuracy of the

approximation, yet no strategy for a good choice of these parameters is offered. We

note here that this quadrature also does not lend itself to analysis of convergence, as

the extraction term is represented in the time domain as a delta function,

t−α

Γ(1− α)
=

NGJ∑
j=1

w
(1)
j e−y

(1)
j t +

NGL∑
j=1

w
(2)
j e−y

(2)
j t + gδ(t). (3.57)

Diethelm has similarly utilized Gauss-Jacobi quadrature, but this time with an

initial mapping to a finite domain y = 1−z
1+z

, so∫ ∞
0

y2α−1e−y
2tdy =

∫ 1

−1

(1− z)2α−1(1 + z)1−2αe(
1−z
1+z )

2
t 2

(1 + z)2
dz (3.58)

This also makes the choice of Jacobi quadrature intuitive, with weight function

w(a,b)(z) = (1 − z)2α−1(1 + z)1−2α. With such a choice, the approximation (3.50)

holds with a higher accuracy, and over a larger range of time. This quadrature is

well-designed, since the algebraic singularity as t → 0 (corresponding to z → 1) is

built into the weights. Thus,

wj :=
4

π
sin (πα)

wGJj
(1 + zGJj )2

, yj :=

(
1− zGJj
1 + zGJj

)2

. (3.59)

Gautschi [14] has indicated that the approximation will converge to the integral

exponentially fast when the nearest pole of φ in the complex z domain is bounded

away from the real line segment (−1, 1). This condition holds for t ≥ δ > 0, where

δ = O(N−4) is determined by the number of nodes; however imposing a certain

degree of uniform accuracy with this method as a function of the number of points
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N is still not so straightforward. While exponential accuracy is obtained with the

Jacobi quadrature for O(1) time, as observed in Figure 3.4, the breakdown of the

approximation for small times happens well before the the time δ ≈ N−4.

Figure 3.3 Distribution of weights and nodes with N = 30, and α = 0.6. All nodes
and weights are transformed, so that t−α/Γ(1 − α) =

∑
wje

−yjt. Note the effects of
spreading.

The construction of equation (3.41) can be recovered by making a change of

variables y = ez in equation (3.45) so that

t−α =
1

Γ(α)

∫ ∞
−∞

eαz−te
z

dz. (3.60)

The rightmost integrand has some notable features, such as exponential convergence

at the lower limit, and super-exponential convergence at the upper limit. Because of

this, we can truncate the integration limits and bound the neglected contributions,
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Figure 3.4 Absolute error in using an N = 30 term sum of exponentials to
approximate the convolution kernel t−α/Γ(1 − α), with α = 0.6 using the Beylkin
and the Gauss-Jacobi methods. Only that of Beylkin can ensure a uniform accuracy
across the time interval of interest.

which will be exponentially small. The remaining integral can then be discretized

using the trapezoidal rule, where the step size is determined using the Poisson sum-

mation formula and the condition that a degree of error is maintained uniformly; we

refer the reader to [3] for further details.

In order to quantify how well each of the above listed methods performs, it

would suffice to ask how accurate the approximation (3.50) is, and over which interval

of time a given prescribe error is maintained. To this end, Figure 3.4 shows that

only the construction by Beylkin can yield an a priori error bound that is uniformly

maintained over a time interval of interest. The Gauss-Jacobi quadrature constructed

by Diethelm actually outperforms the Beylkin construction for O(1) times, where
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exponential convergence is achieved; however, this behavior breaks down for small

times, which would become important in resolving the transient behavior of the Cole-

Cole medium. These methods are clearly better than those proposed by Yuan and

Agrawal, or Lu and Hanyga.

It is no coincidence that the distribution of the weights and nodes in Figures 3.1

and 3.3 show two distinctive patterns; that is, the methods which yield more accurate

approximations have a tendency to distribute the weights and nodes uniformly, over

larger ranges. In fact for the Yuan-Agrawal method, the clustering of the nodes over

the interval y ∈ [102, 104] corresponds to the high resolution over the time interval

t ∈ [10−3, 10−1] in Figure 3.2; this is however at the expense of the accuracy in other

time intervals. Similarly, the method of Lu and Hanyga also exhibits clustering that

resolves certain time intervals more accurately than others.

We now take a moment to compare to work by Torres et. al [37], in which a

similar implementation of the Cole-Cole model is constructed. This time, the weights

and nodes are first scaled by the time step and integrated∫ (m+1)∆t

m∆t

u−α

Γ(1− α)
du ≈ ∆t1−α

Γ(2− α)

N∑
j=1

aje
−bjm. (3.61)

The equivalence of this approach, and those above can be shown by integrating the

right hand side of equation (3.50) over [m∆t, (m+ 1)∆t], and equating the resulting

expression; thus bj = yj∆t, and aj = ∆tαΓ(2− α)(1− e−bj)wj
bj

. In order to arrive at

this expression, the approximation that ∂P
∂t

(t − u) is a constant over each interval is

taken.

3.4 Numerical Example of Fractional Derivatives

The computation of a fractional derivative is a special case of a fractional differential

equation of order α

Dα
t P (t) = f(t, P (t)), t > 0, (3.62)
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for which f(t, P (t)) = f(t). We will first compute the fractional derivative of two

trial functions that highlight the prominent quantitative features of the method of

approximation

f1(t) = 1 + t+ t2, f2(t) = t3 (3.63)

The trapezoidal and exponential methods are employed to compute the fractional

derivative of order α = 0.65 for each of the functions (3.63) over the interval [h, 1]

for h in the range [9 × 10−5, 10−1]. A representative solution for each fractional

derivative is shown in Figures 3.5 and 3.7, along with the resulting L2 convergence

plots in Figures 3.6 and 3.8. For reference, the fractional derivative for monomials is

given by

Dα
t

(
tk
)

=
Γ(k + 1)

Γ(k + 1− α)
tk−α, k > 0, (3.64)

and where the fractional derivative of a constant (k = 0) is zero, as can be observed

by appealing directly to the Caputo definition (3.6). The exponentials were obtained

using Gauss-Jacobi quadrature, and are held fixed with N = 40 terms in each

implementation. The size of the exponentials yj span the range [10−6, 5× 106]. This

is in agreement with the asymptotic behavior of the Gauss-Jacobi nodes, which gives

the smallest exponential to be y1 = c1N
−4, and the largest by yN = c2N

4. The

constants c1 and c2 are both O(1), and depend on α.

We are now presented with a dilemma; the range of the exponentials indicates

that the resulting ODEs are stiff, and while the parameter N increases the accuracy of

the fractional derivative approximation (3.9), it simultaneously increases the stiffness

of the resulting system. This is both problematic and unavoidable for long time

simulations, for which N must chosen large to maintain accuracy over the entire time

interval.
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Figure 3.5 The fractional derivative of order α = 0.65 for f1(t) = 1 + t + t2. The
oscillations in the trapezoidal rule are noticeable in this instance. Excellent agreement
is achieved using the exponential differences method.

The trapezoidal rule requires that the largest quantity yjh be small in order

to resolve the stiffness. But since the smallest step size in our computations is

h = 9 × 10−5, and largest exponential is yN ≈ 106, it is clear that the stiffness

is not adequately resolved. Consequently, the trapezoidal rule produces oscillatory

behavior in the solution shown in Figure 3.5; but notice that such oscillations do not

present themselves in the case f(t) = t3 in Figure 3.7, which is used to demonstrate

convergence in [11]. In fact, the convergence indicated in Figure 3.8 shows second

order convergence for this function, but only first order convergence for f(t) = 1+t+t2

in Figure 3.6. The slower convergence is due to the oscillations, which result from the

the asymptotic behavior of dj in equation (3.29) for large yj; that is, dj ≈ −1. The
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corresponding auxiliary variables φj will thus become nothing more than spurious

modes of oscillation which pollute the numerical solution. Their amplitude will be

determined by the size of ḟ(t), which is the right hand side for the ODEs (3.27). Over

the first few time steps, the derivative of f(t) = t3 is O(h2), so that the oscillations

are initially small, and will in fact remain small for substantially longer times. Thus

the oscillations do not present themselves when f(t) is chosen so that its first few

derivatives near t = 0 are small; that is, when f(t) is sufficiently flat.

This flatness condition is violated for the trial function f(t) = 1+t+t2, which has

an O(1) derivative over the first few time steps. For such functions, the stimulation

of the spurious oscillatory modes is unavoidable. Consequently, the trapezoidal rule
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Figure 3.6 L2 convergence for f1(t) = 1 + t + t2. The Trapezoidal rule gives 1st
order convergence, but the exponential differences method gives convergence of order
2− α.
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Figure 3.7 The fractional derivative of order α = 0.65 for f2(t) = t3. The
oscillations in the trapezoidal rule in are not present in this case, but the same
agreement is achieved for the exponential differences method.

is only useful when f(t) is sufficiently flat near the origin, since only then can the

relatively strict condition on the time step, namely that yNh� 1, be relaxed.

In contrast, the exponential differences method produces convergence of order

2 − α for both trial functions. The oscillations observed in the trapezoidal rule

will not present themselves here, since the asymptotic limit for large yj produces

dj → 0, rather than −1. To explain this phenomenon, we compare the coefficients

in equations (3.28) and (3.30) with the recurrence relation (3.26). Notice that in the

case of exponential differences the choice of dj is exact, and therefore preserves the

asymptotic properties of the true solution for large yj. For this reason, no spurious

oscillations present themselves in the numerical solutions, despite the fact that the
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Figure 3.8 L2 convergence for f2(t) = t3. The Trapezoidal rule gives 2nd order
convergence, but the exponential differences method gives convergence of order 2−α.

step size is not sufficient to resolve the stiffness. Notice that this is true regardless

of the function f(t). This makes the use of exponential differences preferable to the

trapezoidal rule in approximating the fractional derivative.

3.4.1 Approximation with q = 1, 2

Despite its advantages, the convergence of order 2− α in the exponential differences

method is rather slow. We will now use the q = 1, 2 methods to compute the numerical

fractional derivative of the same functions (3.63).

The fractional derivative for the same two functions, with the same parameters

shown in Figures (3.5) and (3.7) respectively, were computed numerically using this
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Figure 3.9 Second order convergence is achieved for the q = 2 method. The q = 1
method exhibits convergence of order 2− α.
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Figure 3.10 Second order convergence is achieved for the q = 2 method. The q = 1
method exhibits convergence of order 2− α.



51

method. The L2 convergence is shown in Figures 3.9 and 3.10. For comparison, the

best two methods for computing the sum of exponentials from Figure 3.4 are shown.

For both functions, the q = 1 method shows convergence of order 2− α, whereas the

q = 2 method gives second order convergence.

3.4.2 Relationship with Fractional Integrals

A more recent work by Li [25] has also presented a method for calculating fractional

integrals that is closely related to those presented here. The construction therein

gives a quadrature with Q points, where Q is O((log 1
ε

+ log 1
∆t

)2). Notice that this

is an order of magnitude larger than N as indicated in equation (3.44). The main

difference is that Li’s construction is valid for all time. For comparison, we show

in Figures 3.11 and 3.12 the error in approximating the kernel with the exponential

method due to Beylkin for two values of α. These constructions are valid for the

prescribed precision ε = 10−6 over successively larger time intervals. The right plot

is the most demanding value of α shown in [25], due to the slow decay of the kernel.

The approximations with N = 52 and N = 73 are valid up to times t = 1010 and

t = 1015, respectively. At time t = 1060, the function which is being approximated

has decreased below the prescribed tolerance level, so that the absolute error cannot

be larger; and so increasing N beyond 369 would be unnecessary. It is noteworthy

that before reduction of nodes, our algorithm found N0 = 422 nodes necessary to

initialize the quadrature, in complete agreement with Li’s bound. While it is an

interesting prospect to think of computing a solution up to such a time, it is not

practical. Furthermore, it is clear that by imposing the prescribed accuracy up to

some finite time T rather than T = ∞, the number of quadrature points can be

reduced by an order of magnitude (perhaps several). When we also take into account

that the storage for the fractional integral is O(N) and the computational complexity
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Figure 3.11 The absolute error in approximating tα−1/Γ(α), with α = 0.1. The
prescribed precision is ε = 10−6. The time step ∆t = 10−4 is used for the construction.
Eventually the function decreases below the precision level, and no more nodes are
required.

is O(NNt) after Nt time steps, we see that reducing the quadrature inherently makes

the algorithm more efficient.

To demonstrate this further, we solve the fractional integral problem for the

same function used in [25]

f(t) =
t

1 + t
+ sin (16.3t) + tα + t2α + t1+α + t2+2α, (3.65)

and construct the L2 error for the minimal number of quadrature nodes in Figure

3.13. Upon setting N = 25, the error behaves as depicted in the p = 2 case in Figure

4 of [25]; but if N is decreased to 24, the quadrature error dominates the truncation

error as ∆t decreases. Hence, for a fixed time interval the approximation can be made

with far fewer nodes, and without affecting the overall accuracy.
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Figure 3.12 The absolute error in approximating tα−1/Γ(α), with α = 0.9. The
prescribed precision is ε = 10−6. The time step ∆t = 10−4 is used for the construction.
Eventually the function decreases below the precision level, and no more nodes are
required.

Figure 3.13 Error in approximating the fractional integral of (3.65) with a small
number of nodes.
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3.5 FD-TD Implementation

We now proceed with a construction of FD-TD method for the Cole-Cole model.

Before discretization of equations (1.2), we non-dimensionalize by introducing the

scaled variables

E ′ =
1
√
ε0
E, P ′ =

√
ε0P, H ′ =

1
√
µ0

H, t′ =
t

Tp
, x′ =

√
ε0µ0

Tp
x. (3.66)

The natural choice for the time scaling parameter would be Tp = τ , which would

eliminate the appearance of τ ′ = τ/Tp below; this is in fact what is done for our

simulations. Nonetheless we retain τ ′ to provide a more general presentation of the

model, which is applicable when Tp 6= τ . Maxwell’s equations are discretized in time

and space according to a standard Yee scheme; let En
m = E(m∆x, n∆t), and similarly

define the magnetic and polarization field. Inserting the scaled variables (3.66) and

dropping the primes, we have

1

∆t

(
H
n+ 1

2

m+ 1
2

−Hn− 1
2

m+ 1
2

)
=

1

∆x

(
En
m+1 − En

m

)
,

1

∆t

(
ε∞(En+1

m − En
m) + P n+1

m − P n
m

)
=

1

∆x

(
H
n+ 1

2

m+ 1
2

−Hn+ 1
2

m− 1
2

)
τα (Dα

t P )n+1
m + P n+1

m = (εs − ε∞)En+1
m . (3.67)

The dimensionless infinite frequency speed c∞ = 1/
√
ε∞ defines the CFL number ν =

c∞
∆t
∆x

. The discretization of the polarization law (3.4) is performed at t = (n+ 1)∆t,

which is consistent with our treatment in Section 3.2 and will make it possible to

determine the fractional derivative in terms of P at the grid points n∆t.

3.5.1 Stability

In the standard framework, we study the amplification factors of the system by

forming the stability polynomial, and determining the location of its roots. For E, P ,

H, and φj we make the substitution (·)nm = (·) gneikm∆x, and form the characteristic
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polynomial. The stability polynomial can be put in the general form:

Φ(g) = (g − 1)2

(
1 +

r − 1

1 + τασ(g)

)
+ 4ν2 sin2

(
k∆x

2

)
g = 0, (3.68)

where ν = c∞∆t/∆x is the CFL number. The fractional derivative approximation is

characterized by σ(g), and will therefore contain all of the information involving the

exponentials, as well as the coefficients (3.20) and (3.23) for q = 1, 2 respectively. For

the q = 1 method, we have

σ(g) = (g − 1)

(
A1

0 +
N∑
j=1

wjbj
g − e−yj∆t

)
, (3.69)

with

bj = e−yj∆t(1− e−yj∆t)/(yj∆t), j = 1, 2 . . . N. (3.70)

Similarly, the q = 2 method can be written as

σ(g) = (g − 1)

(
A2

0 − gA2
2 +

N∑
j=1

wjbje
−yj∆t

g − e−yj∆t

)
, (3.71)

where we have used the fact that A2
1 = −A2

0−A2
2 to factor out the (g− 1) term. The

stability polynomial can also be evaluated numerically by forming the corresponding

amplification matrix of size N+2+q, and finding the eigenvalues for a representative

set of parameters. Of the roots, N + q of them remain mostly stationary as the wave

number k is varied; the remaining two traverse arcs that stay near (but within) the

boundary of the unit circle, beginning at g = 1 when k = 0, and approaching g = −1

for k = π. When the classical CFL condition ν = 1 is imposed, these two roots will

come to rest inside the unit disk, very close to the real g−axis.

We show a representative example of the absolute value of the maximum eigen-

value, with r = 75, h = 10−3, and α = 0.75 for the q = 1 method. Notice that

when the classical CFL condition ν = 1 is prescribed, the maximum eigenvalue is
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Figure 3.14 Instability is demonstrated for the q = 1 case when the numerical
CFL condition (3.72) is violated. The pertinent parameters are r = 75, h = 10−3 and
α = 0.75.

always 1; this corresponds to the approximate eigenvalue e−y1∆t ≈ 1, which is for

all practical purposes independent of the wavenumber. Given this behavior, the

important properties of the stability factor are determined in a neighborhood of

g = −1, when we allow z = ν sin
(
k∆x

2

)
to exceed unity. We can therefore determine

the approximate stability condition for the numerical scheme by evaluating σ(−1),

and treating the rest of the polynomial, which is now quadratic and therefore easy

to examine. Applying the Schur criterion [4], we have the following two approximate

stability conditions

ν2 ≤ 1 +
r − 1

1 + 2(A1
0 + ρ1)

, ρ1 =
N∑
j=1

wjbj
1 + e−yj∆t

. (3.72)
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Table 3.1 Validation of Stability Conditions Given by Equations (3.72) and (3.73).

q=1 q=2

h νPredicted νActual νPredicted νActual

.001 1.0812 1.1013 1.0610 1.0601

.0001 1.0149 1.0188 1.0111 1.0112

.00001 1.0027 1.0034 1.0020 1.0020

when q = 1; and analogously for q = 2 the stability condition is

ν2 ≤ 1 +
r − 1

1 + 2(A2
0 + A2

2 + ρ2)
, ρ2 =

N∑
j=1

wjbje
−yj∆t

1 + e−yj∆t
. (3.73)

Both of these conditions can be put into a simpler form, with the right hand sides

replaced with 1+cq(r−1)hα, with cq andO(1) constant. These approximate conditions

are validated in Table 3.1, where the predicted bounds from (3.72) and (3.73) is

computed for different values of h, holding all other parameters fixed. The actual

value ν is that for which the maximum eigenvalue of the amplification factor exceeds

1. The parameters used in Figure 3.14 are retained. Both cases predict the actual

instability quite well, but the q = 2 case provides markedly excellent agreement.

Notice that for g = eiω∆t, setting g = −1 is equivalent to choosing ω to be the

highest frequency resolved by the stepsize ∆t. Thus, freezing the fractional derivative

σ(g) at g = −1 is equivalent to evaluating it at the highest frequency that is resolved,

and therefore we are examining the infinite-frequency limit of the fractional derivative.

The stability conditions can be reformulated in dimensional quantities; replacing

the CFL condition and rearranging, the stability conditions take the form(
∆x

∆t

)2

≤ µ0ε0

(
ε∞ +

εs − ε∞
1− σ(−1)

)
. (3.74)

We now see that the right hand side of the expression is the square of the inverse

speed of the medium, given in terms of the permittivity. Thus, our approximation is
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recovering the numerical approximation of the infinite-frequency wave speed c∞ in the

Cole-Cole medium. The numerical equivalent of this maximum speed is dependent on

the step size, and approaches the true limit as ∆t→ 0; this can be seen by noticing

that Aqk ∼ ∆t−α, and thus σ(g) is singular in this limit. In practice, we prefer to

choose a CFL condition which is independent of the stepsize ∆t, and indeed taking

the limit ∆t → 0 in equations (3.72) and (3.73) produces the classical choice ν ≤ 1.

In our numerical simulations, we therefore use ν = 1.

3.5.2 Phase Error

The phase error represents the total error in the system (3.67) for a given spatial

Fourier component k = k(ω). It will be composed of the truncation error due to

discretizing the PDEs, as well as the quadrature error in approximating the integral

(3.46). We examine the phase error ΦN,h = |kN,h/k − 1| for a given value of α by

varying both N and h = ∆t/τ , for ω∆t ≤ π. The wave number k is given by

k2 = ω2µ0ε0

(
ε∞ +

εs − ε∞
1 + (iωτ)α

)
=

(
ω

c0

)2

(ε∞ + χ̂) . (3.75)

The discretized wave number similarly satisfies

4

∆x2
sin2

(
kN,h∆x

2

)
=

4

(c∞∆t)2
sin2

(
ω∆t

2

)(
1 +

r − 1

1 + σ(ω)τα

)
, (3.76)

where the term σ(ω) ≈ (iω)α is the approximation to the fractional derivative,

as shown in the stability analysis, but now with g = eiω∆t. We construct the

approximation for q = 1,

σ(ω) =
(
1− e−iω∆t

)(
A1

0 +
N∑
j=1

wjbje
−iω∆t

1− e−(yj+iω)∆t

)
, (3.77)

whereas when q = 2 we have

σ(ω) =
(
1− e−iω∆t

)(
A2

0 − A2
2e
−iω∆t +

N∑
j=1

wjbje
−(yj+iω)∆t

1− e−(yj+iω)∆t

)
. (3.78)
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Figure 3.15 Phase error for the two methods, with q = 1. Here we have taken
α = 0.75, τ = 1, εs = 75, and ε∞ = 1.

As in the stability analysis, we have again made use of the fact that A2
1 = −A2

0−A2
2 to

eliminate one of the coefficients. These two methods are compared for a representative

set of parameters (α = 0.75, εs = 75, ε∞ = 1, τ = 1) in Figures 3.15 and 3.16.

The same quadrature nodes and weights are used for both q methods. Note that

for relatively large time step sizes, the q = 1 method performs nominally better than

the more accurate q = 2 methods. This will also be shown in our FD-TD validation.

The order of the phase error can be determined by careful observation of the terms

appearing in the fractional derivative. First, note that

bj = e−yj∆t
1− e−yj∆t

yj∆t
=
e−yj∆t

∆t

∫ ∆t

0

e−yjudu, j = 1, 2, . . . N, (3.79)



60

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ω∆t/π

R
el

at
iv

e 
P

ha
se

 E
rr

or

 

 

h=0.1
h=0.01
h=0.001

Figure 3.16 Phase error for the two methods, with q = 2. Here we have taken
α = 0.75, τ = 1, εs = 75, and ε∞ = 1.

and that according to equation (3.9), the sums involving exponentials will satisfy

N∑
j=1

wje
−yj∆t =

∆t−α

Γ(1− α)
(3.80)

with a small error ε. The denominator of σ(ω) can be expanded as an infinite series,

and with the definition of A1
0 and bj, we have (for q = 1)

σ(ω) =
1− e−iω∆t

∆t

(
∆t1−α

Γ(2− α)
+
∞∑
n=0

N∑
j=1

wj

∫ ∆t

0

e−(n+1)(yj+iω)∆t−yjudu

)

=
1− e−iω∆t

∆t

(
∆t1−α

Γ(2− α)
+
∞∑
n=1

e−niω∆t

∫ (n+1)∆t

n∆t

N∑
j=1

wje
−yjudu

)

=
1− e−iω∆t

∆t

∞∑
n=0

e−niω∆t

∫ (n+1)∆t

n∆t

u−α

Γ(1− α)
, (3.81)
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where in the final step, we have used the fact that A1
0 is clearly the n = 0 contribution

to the summand. This final approximation is precisely the Fourier transform of the

fractional derivative kernel, with a second order error, which follows from

1− e−iω∆t

∆t
e−niω∆t = e−iωu +O((ω∆t)2), n∆t ≤ u ≤ (n+ 1)∆t. (3.82)

An analogous argument is made for the q = 2 case, but with the first two terms of

the summand coming from the local expansion coefficients A2
0, A

2
1, A

2
2. Thus, we have

σ(ω) = (iω)α +O((ω∆t)2), (3.83)

and substitution into the phase shows that the phase error will also be second order

in both cases.

3.6 Numerical Validation

The solution to the system (3.67) was computed for the time signaling problem for

various values of α and h = ∆t
τ

; the remaining parameters are fixed and scaled

according to (3.66), so that εs = 75, ε∞ = 1, τ = 1 and the CFL condition is ν = 1.

Notice this also fixes the dimensionless speeds to be c∞ = 1, cs = 1/
√

75 in the

infinite and zero frequency limits respectively.

The electric field was prescribed at x = 0 by a unit impulse of duration td =

τ = 1 and amplitude 1/td = 1. The resulting time trace was recorded at a few spatial

locations to observe its evolution. The simulation is ended prior to the signal reaching

the right-hand boundary, so that no reflection is recorded. Representative solutions

are shown in Figures 3.17, 3.19 and 3.21 for α = 0.6 and 0.75, at short, medium

and large depths respectively into the material. The solution was carried out to time

T = 250τ , and a depth of L = 20c∞τ . The solutions shown were computed using the

q = 2 method and Beylkin’s quadrature, and the exact solution is given by using the

Laplace transform method of Chapter 2.
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Figure 3.17 Plot of the electric field due to a step pulse of duration td = τ , at
a depth x = 0.008c∞τ . In the skin-depth, the initial waveform is prevalent, but
smoothing has already begun. The value of α has little effect here.

For short depths, the transient nature of the waveform is observed, which still

resembles the initial square pulse that was introduced at the air-medium interface. As

predicted in Section 2.2, the initial discontinuities of the square wave are immediately

removed due to the smoothing nature of the fractional operator.

Beyond the skin depth the transient nature of the pulse fades, and the pulse

propagates at sub-characteristic speed cs. The peak value of the electric field arrives

slightly before the time determined by the sub-characteristic ray t = x/cs for α < 1,

as predicted.

The L2 relative error ||Eexact − E||/||Eexact|| is then computed over time. For

comparison, the error is shown in Figures 3.17, 3.19 and 3.21 for the q = 1 and q = 2
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Figure 3.18 L2-Error corresponding to Figure 3.17.

methods at short, medium and large spatial depths. The quadrature is designed for

each case to satisfy ε = O(hq+1) ensure that the error due to approximating the

fractional derivative does not exceed the truncation error. Additionally, we have also

computed the solution using the trapezoidal rule, neglecting the local contributions

(q = 0), using Diethelm’s Jacobi (’Jac’ in the error plots) method with N = 20, and

the extraction method (’Ext’) of Lu and Hanyga with N = 50.

For short depths, the expected order of convergence is achieved as h is reduced,

but surprisingly the q = 1 method performs slightly better for larger h. The same

is true for larger depths, but even more noticeably. The order of convergence is as

expected; first order for q = 1 and second for q = 2. Perhaps more surprising is

the second order convergence of the ’Jac’ and ’Ext’ methods, which do not contain
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Figure 3.19 Plot of the electric field due to a step pulse of duration td = τ ,
at a depth x = c∞τ . The transition region between the skin depth and the bulk
medium shows rapid attenuation. The transient behavior of the waveform is rapidly
diminishing, and the characteristic pulse due to the material response is becoming
apparent.

a local approximation of the fractional derivative (thus, they are q = 0 methods).

The quadrature error in the Jacobi method is dominated by the discretization error,

and is therefore less than O(∆t2) for ∆t ≥ 3.125 × 10−5, even with 20 nodes;

this is far better than predicted by Figure 3.4. By comparison, the ’Ext’ method

with N = 50 can be seen to be dominated by quadrature error as ∆t is reduced

in Figure 3.20. The numerical evidence suggests that the fractional derivative can

be accurately approximated for a sufficiently accurate quadrature rule, without the

special treatment at the singularity given by the new q methods presented here (i.e.,

with a straightforward application of the trapezoidal rule). It must be noted however
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Figure 3.20 L2-Error corresponding to Figure 3.19.

that the q = 2 method does outperform all other methods uniformly by a noticeable

margin at all spatial depths.

3.7 Conclusion

In the present work, we have implemented and analyzed a numerical scheme that

computes the propagation of an incident electromagnetic pulse through a medium

described by the Cole-Cole dielectric model using standard FDTD methods. We

present numerical schemes for q = 1 and 2, which are convergent of order 1 and 2

respectively, both of which preserve the CFL condition; this latter result holds for

similar methods such as [26], [37], [36], which were shown to be equivalent to our q = 1

method, but with a different choice of exponentials. The numerical results suggest
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Figure 3.21 Plot of the electric field due to a step pulse of duration td = τ , at a
depth x = 5c∞τ . The waveform is now determined by the medium parameters. For
the two solutions depicted, all parameters are held fixed except α, which can be seen
to to affect the pulse symmetry, and duration of the tail.

that a q = 0 implementation, which omits special treatment of the singularity in the

fractional derivative, yields second order results as well, although with a marginally

larger error than the q = 2 method. As will be shown in Chapter 4, the polarization

can also be formulated as a convolution with the electric field, which will also be

shown to be second order accurate.

Several methods of discretizing the fractional derivative were investigated. The

most efficient of these are the sum of exponentials construction presented in [3], and

the Gauss-Jacobi quadrature of [11]. However only in the former method is there a

relationship which makes it possible to choose the appropriate number of exponentials.
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Figure 3.22 L2-Error corresponding to Figure 3.19.

Given a tolerance ε, and a number of timesteps Nt, the number of exponentials is

N = O(log 1/ε+ logNt).



CHAPTER 4

THE HAVRILIAK-NEGAMI DIELECTRIC MODEL

4.1 Introduction

As was mentioned previously, the discussion in Chapter 3 for the C-C model can-

not be extended to the FDTD method for the H-N model. Recently, a procedure

to approximate the H-N dielectric with exponentials in the time domain has been

presented in the literature [22]. This work presents an approximation of the H-N

dielectric model by Debye functions (poles) in the frequency domain with a preset

accuracy over a specified band of frequencies. Therefore the overall scheme possesses

the stability and accuracy properties of the schemes typically used to implement the

Debye dielectric model in the FD-TD scheme [28]. However, the accuracy in the

time domain, particularly over a given computational duration t ∈ [0, T ], will be

unknown. Furthermore, the polarization dynamics are not accurately represented in

the time-domain, as the singularity of the time-domain susceptibility that arises from

dielectric models with fractional relaxation is not taken into account. Consequently,

the ability to compute the impulse or step response of spatially complex dispersive

scatterers is lost.

It appears that there would be great utility in being able to implement the

H-N dielectric model in a way that offers the modeler the ability to perform time-

domain simulations over a specified time interval [0, T ] while maintaining both a preset

accuracy for the polarization dynamics and the stability and accuracy attributes of

the FD-TD method. Also, it would be desirable that the implementation does not

depend on the values of α and β thus eliminating the need for separate codes when

considering the H-N model’s subclasses in the FD-TD method.

68



69

Although the Debye case (α→ 1−, β = 1) is a singular limit of the H-N model,

and thus our approach presented below does not include it, we offer a work-around

this shortcoming in the Summary Section 6. Finally, it should be emphasized that it

is desirable that the implementation of the polarization dynamics of the H-N model

be correct at t → 0+ in order to allow the modeler to compute the impulse- or

step-response response of a spatially complex time-dispersive object directly in the

time-domain for the purpose of storing the obtained results at desired spatial locations

and later using them to compute the response of the object to arbitrary incident pulses

without recomputing with the FD-TD method.

In Section 4.2 of the chapter we present an approach that approximates the

induced polarization dynamics of the H-N model with a preset accuracy over an

arbitrary (but a priori known) computational time interval [0, T ]. We show our

method correctly captures both the short- and long-time behavior of the correspond-

ing time-domain susceptibility. The conventional approach to convolution requires

O(N) storage, where N is the number of time steps, so that longer computations

become progressively restrictive due to memory allocation. In the development of our

method we employ the efficient numerical techniques of [20], [2] to drastically reduce

the required storage from O(N) to O(logN) in order to compute a convolution and

solve the H-N model as a system of M = logN evolution equations appended to the

Maxwell system which requires only the information from the previous time step to

perform an update. In Sections 4.3.1 and 4.3.2 we show our scheme preserves the

second order convergence and the CFL stability condition of the FD-TD method. We

close the chapter with numerical validations and experiments in Section 4.4 and a

short summary and discussion in Section 4.5.
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4.2 Numerical Approximation of the Polarization Law

We now present the FD-TD implementation for the H-N model by considering the

same signaling problem as in Chapter 3. As before, we proceed by first scaling the

space, time and field variables

E →
√
ε0E, P → 1

√
ε0
P, H → √µ0H, t→ Tpt, x→ Tp√

ε0µ0

x, (4.1)

where the time scale Tp is usually (but not necessarily) chosen to be the dielectric

model central relaxation time τ . Maxwell’s equations are again

∂H

∂t
=
∂E

∂x
, (4.2)

∂

∂t
(ε∞E + P ) =

∂H

∂x
, (4.3)

but we will now appeal to the definition of the induced polarization (1.6)

P (x, t) =

∫ t

0

χ(t− t′)E(x, t′)dt′; t > 0. (4.4)

The susceptibility χ(t) expresses the induced polarization dynamics and for the H-N

model it is obtained as the inverse Laplace transform

χ(t) =L−1

{
εs − ε∞

(1 + (sτ)α)β

}

=
∆ε

2πi

∫ ζ+i∞

ζ−i∞

est

(1 + (sτ)α)β
ds

=
∆ε

πτ

∫ ∞
0

sin (βθ(y))e−yt/τ

(y2α + 2 cos (πα)yα + 1)β/2
dy, (4.5)

with θ(y) ∈ [0, πα] given by

θ = cos−1

{
yα cos (πα) + 1√

y2α + 2 cos (πα)yα + 1

}
. (4.6)

It is worth noting that in current literature, the angle θ is defined using the arctangent,

which is only valid for θ < π/2, and must therefore be defined piecewise to obtain the
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correct angle [43]; the above definition does not require such manual adjustment. In

addition, this definition will hold in general for 0 < α < 1, and is thus valid for both

the C-C and H-N models. The C-D model requires a slightly modified treatment; in

this case the Bromwich contour used in the inverse Laplace transform is deformed

onto the branch cut which is now located along the negative real axis issuing from

the branch point at s = −1/τ rather than at the origin (as in the case of the H-N

and C-C models). Furthermore, θ → π, and the denominator can be reduced. We

thus obtain the time-domain susceptibility for the C-D model

χ(t) =
∆ε

πτ

∫ ∞
1

sin (πβ)

(y − 1)β
e−yt/τdy

=
∆ε

πτ
sin (πβ)e−t/τ

∫ ∞
0

v−βe−vt/τdv (4.7)

=
∆ε

Γ(β)τ

(
t

τ

)β−1

e−t/τ .

Notice that we can directly evaluate the case β = 1 in this latter expression and

recover the Debye case; this could also have been done by observing that in this case

the distribution in (4.5) will collapse into a delta function δ(t− τ), which ultimately

leads to the same result. The integral in equation (4.7) provides implicitly an integral

transform for the singular portion of the susceptibility tβ−1; through this relation the

C-D model can be similarly treated along with the general H-N model.

Specifically, equations (4.5) and (4.7) comprise a continuous distribution of

exponentials; in fact the Debye case is a “distribution” of a single exponential. The

nucleus of our method is to replace the susceptibility by an approximation that makes

discretization simple, but for which we have an a priori error bound that is uniform

over our computation window t ∈ [0, T = N∆t]. For FD-TD methods, we will use a

uniform grid in time that locates the E and P fields at tn = n∆t, n = 1, 2, . . . N .

To motivate our approximation, we obtain the behavior of the susceptibility by

expanding the integrand in (4.5) for large and small arguments of the integration
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variable y. Doing so provides the leading order behavior for small and large t,

respectively in the H-N case; the corresponding result for the C-D model can be

obtained from direct examination of the closed form obtained from equation (4.7).

The resulting behaviors for small and large time in each model are:

χ ∼


tαβ−1, t→ 0; t−α−1, t→∞ H −N

tα−1, t→ 0; t−α−1, t→∞ C − C

tβ−1, t→ 0; e−t/τ , t→∞ C −D.

(4.8)

Recalling that 0 < α, β < 1 it follows that χ(t) ∈ L1([0, c]) and χ(t) ∈ L1([c,∞]) ∩

L2([c,∞]) for c > 0. Due to the singularity at t = 0+, we treat the interval [0,∆t]

separately. Away from t = 0+, χ(t) is a smooth algebraically decaying function

that can be approximated efficiently with a sum of exponentials over a finite interval

[∆t, T ]. Therefore, we will represent the induced polarization as a sum of a local and

a history part [15],

P (x, t) =

∫ t

0

χ(t− t′)E(x, t′)dt′ =

∫ t

0

χ(t′)E(x, t− t′)dt′

=

∫ ∆t

0

χ(t′)E(x, t− t′)dt′ +
∫ t

∆t

χ(t′)E(x, t− t′)dt′

=Ploc(x, t) + Phist(x, t). (4.9)

4.2.1 Local Approximation

In order to represent the local part Ploc of the induced polarization accurately we

obtain an asymptotic expansion of the susceptibility χ for the small t, of which the

leading order behavior is indicated in (4.8). A simple scaling argument shows that

this will correspond to large values of the integration variable s in the first line of

equation (4.5). The Laurent expansion of (1 + (sτ)α)−β is then integrated term by

term, resulting in

χ(t) ≈ ∆ε

τ

K∑
k=0

(−1)k

Γ(α(k + β))

(
β + k − 1

k

)(
t

τ

)α(k+β)−1

, (4.10)
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where (
β + k − 1

k

)
=

Γ(β + k)

Γ(β)Γ(k + 1)
(4.11)

is a generalized binomial coefficient, and the number of terms K to be included can

be determined for a preset precision level.

The C-C and C-D models can be obtained by setting β and α = 1 respectively;

for the C-D model, we can see that the expansion is in fact that of the exponential

obtained in (4.7) which is multiplied by the singular term (t/τ)β−1, which means that

the expression is exact for K →∞. This is true for the H-N model, since the series in

(4.10) can be shown to be absolutely convergent. Since χ ∈ L1([0,∆t]), if we assume

that E ∈ L2([0,∆t]) then the same will hold for the local approximation Ploc. We

now use linear interpolation to approximate

E(x, t− t′) ≈ E(x, t) +
t′

∆t
[E(x, t−∆t)− E(x, t)] (4.12)

which expresses E at the grid points and is second order accurate for t ∈ [0,∆t]. The

local approximation is then determined to be

P n
loc =En

(∫ ∆t

0

(
1− t′

∆t

)
χ(t′)dt′

)
+ En−1

(∫ ∆t

0

t′

∆t
χ(t′)dt′

)
(4.13)

=∆ε
(
aEn + bEn−1

)
, (4.14)

where

a =
K∑
k=0

(−1)k

Γ(α(k + β) + 2)

(
β + k − 1

k

)
hα(k+β) (4.15)

b =
K∑
k=0

(−1)kα(k + β)

Γ(α(k + β) + 2)

(
β + k − 1

k

)
hα(k+β), (4.16)

and h = ∆t/τ . We have used the shorthand notation En = E(x, n∆t). Since

we must choose ∆t small enough to resolve the relaxation time [28], we will have

h < 1. Furthermore, the coefficients a and b can be also be shown to be absolutely
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convergent series. To assess the nature of the coefficients for large k we can use

Sterling’s approximation generalized for the Gamma function

Γ(z) =

√
2π

z

(z
e

)z (
1 +O(z−1)

)
(4.17)

and the binomial coefficient(
z + k

k

)
=

kz

Γ(z + 1)

(
1 +

z(z + 1)

2k
+O(k−2)

)
. (4.18)

The terms in the coefficient b will then be of the form

bk =
α(k + β)

Γ(α(k + β) + 2)

(
β + k − 1

k

)
≈ α(k + β)

Γ(α(k + β) + 2)

kβ−1

Γ(β)

(
1 +

β(β − 1)

2k

)
≈ (α(k + β))

kβ−1

Γ(β)

√
α(k + β) + 2

2π

(
e

α(k + β) + 2

)α(k+β)+2

≈α
1−β
√

2π

(αk)β+1/2

Γ(β)

( e

αk

)α(k+β)+2

≈C(α, β)
( e

αk

)α(k+β)−β+3/2

. (4.19)

In this final expression, C(α, β) is independent of K, and is O(1), while the par-

enthetical term will exhibit exponential decay for k > e/α; but since the terms in

equation (4.16) are of the form bkh
α(k+β) the final term obtained by setting k = K

will be sufficiently small for K satisfying K > he/α. Upon multiplying the expression

(4.19) by hα(K+β), we obtain the approximate form of the final term in the sum (4.16),

which we set equal to some user-prescribed tolerance δK . That is,

δK = C(α, β)

(
eh

αK

)α(K+β)−β+3/2

hβ−3/2 = C

(
eh

αK

)α(K+β)−β+3/2

, (4.20)
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and upon taking the natural log of both sides we have

log δK = [αK + 3/2− (1− α)β] log

(
eh

αK

)
+ logC

≈ αK log h+O(1). (4.21)

The discarded terms involving K assuredly remain small, since we consider K > he/α.

We can now solve the reduced expression for K by omitting the O(1) terms, resulting

in a loose upper bound for the number of terms required for convergence,

K =

⌈
log δK
α log h

⌉
. (4.22)

The same bound will hold trivially for a in equation (4.15), since |ak| < |bk| for each k.

Generally K will be relatively small, and in practice K < 10 is sufficient to converge

to double precision for any values of .5 < α, β ≤ 1 and 0.0001 < h < 0.01. It also

follows from the restriction on K that fewer terms are required for smaller values of

h, and larger α. In the present context, the linear interpolation of the electric field

will introduce a second order error, so if we choose δK < h2 we are assured that the

local approximation will maintain second order accuracy.

4.2.2 History Approximation

The kernel of the history part in (4.9) is now approximated as follows∣∣∣∣∣
∣∣∣∣∣χ(t)− ∆ε

τ

M∑
j=1

wje
−yjt/τ

∣∣∣∣∣
∣∣∣∣∣ < δM , (4.23)

where δM is again a user-prescribed tolerance, and the norm is defined to be

||·|| = max
∆t≤t≤N∆t

||·|| . (4.24)

The values of the weights and nodes (wj, yj) are determined using generalized Gaussian

quadrature [20]. Such quadrature weights and nodes can be obtained in several
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different ways; Beylkin et. al. has designed a scheme for finding a sum of exponentials

approximation for a given function [2]. In that work, it is indicated that for a smooth

function (which we have, on [∆t, T ]) the number of nodes can be minimized using

the error tolerance, resulting in M = O(log 1/δM + logN). Alternatively, if we define

χ(t) by a contour integration we can use the methods originally proposed by Rokhlin

et. al. [27]. Finally, one can take the Laplace transform of χ(t), and use it to find a

sum-of-poles approximation, then invert this latter expression.

In the present work, we proceed by making the substitution y = tan θ in

equation (4.5), which maps the integrand to a finite domain 0 < θ < π/2; we then

find a generalized Gaussian quadrature in the variable θ. Since (4.23) has to be

satisfied for all t ∈ [∆t, N∆t], we will sample the interval [∆t, N∆t] by P >> N

points tp p = 1, · · · , P and force (4.23) to be satisfied at these P discrete points.

Recall now that each χ(tp) is represented as a finite integral on a fixed interval with

different integrand functions (tp here is acting as a parameter (or index) for these

P functions fp). However, the crucial observation is that these P functions fp are

not linearly independent numerically. Indeed, by performing a SVD on these P

functions, there are only about 2M = O(log 1/δM + logN) linearly independent basis

functions gm, m = 1, · · · , 2M above the threshold δM/100 (In our actual computation,

P = 200, 000, and 2M = 86). Finally, we apply the generalized Gaussian quadrature

[2],[27] on these 2M basis functions and obtain a sum-of-exponential approximation

with only M nodes and weights. Once the weights and nodes are obtained, we define

the history part of the induced polarization

Phist =
∆ε

τ

∫ t−∆t

0

M∑
j=1

wje
−yj(t−t′)/τE(x, t′)dt′ =

M∑
j=1

wjφj, (4.25)
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where the auxiliary functions satisfy a recurrence relation (viz. tn+1 = (n+ 1)∆t),

φn+1
j =

∆ε

τ

∫ n∆t

0

e−yj [(n+1)h−t′/τ ]E(x, t′)dt′ (4.26)

=
∆ε

τ
e−yjh

(∫ (n−1)∆t

0

+

∫ n∆t

(n−1)∆t

)
e−yj(nh−t

′/τ)E(x, t′)dt′

=e−yjhφnj +
∆ε

τ
e−yjh

∫ ∆t

0

e−yjt
′/τE(x, n∆t− t′)dt′.

We point out here that while φj can also be described using differential equations,

these equations will be stiff, since typically yj ∈ [10−3, 104]. Similarly for the weights

we have wj ∈ [10−5, 10]; Figure 4.1 shows a typical distribution of weights and nodes

that arise in our problem for T = 300. Conversely, this method can be equivalently

Figure 4.1 A typical distribution of Gaussian weights and nodes for the suscep-
tibility χ. The quadrature is designed using ∆t = 5 × 10−4, and δM = 10−9 for
α = β = 0.75.
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derived using exponential time differencing [18]. This final integral can be computed

directly if we again approximate E with its linear interpolant across one time step

(4.12), which results in

φn+1
j = e−yjhφnj + ∆ε

(
cjE

n + djE
n−1
)
, (4.27)

from which, after making a substitution t′ = uτ , we obtain

cj = e−yjh
∫ h

0

(
1− u

h

)
e−yjudu =

e−yjh

y2
jh

[(
e−yjh − 1 + yjh

)]
, (4.28)

dj = e−yjh
∫ h

0

u

h
e−yjudu =

e−yjh

y2
jh

[(
1− e−yjh(1 + yjh)

)]
.

4.3 FD-TD Implementation

We now combine the local and history parts of the polarization, to present the full

numerical scheme using the staggered space-time mesh of the FD-TD method. We

compute E and P at the nodes (xm, tn) = (m∆x, n∆t), and H at the corresponding

semi-nodes. This results in the following discrete form of the equations in (4.2),

H
n+1/2
m+1/2 −H

n−1/2
m+1/2

∆t
=
En
m+1 − En

m

∆x
,

ε∞
En+1
m − En

m

∆t
+
P n+1
m − P n

m

∆t
=
H
n+1/2
m+1/2 −H

n+1/2
m−1/2

∆x
,

which are closed with the discretized induced polarization law (4.4)

P n+1
m =∆ε

(
aEn+1

m + bEn
m

)
+

M∑
j=1

wjφ
n+1
jm (4.29)

φn+1
jm =e−yjhφnjm + ∆ε

(
cjE

n
m + djE

n−1
m

)
, j = 1, 2 . . .M. (4.30)

4.3.1 Stability Analysis

We now study the stability of the scheme by constructing the Von Neumann polyno-

mial. Our goal is to determine whether or not the usual CFL stability condition for



79

the FD-TD method also holds for our scheme. Let

(Hn−1/2
m , En

m, P
m
m , φ

n+1
1m , . . . φn+1

Mm)T = ~Uρneikm∆x. (4.31)

The time index has been shifted for H and {φj} for convenience, and will not change

the resulting polynomial. Upon substituting into each equation we solve for the

characteristic polynomial

Φ(ρ) =
M∏
k=1

(
ρ− e−ykh

)(
Φ1(ρ) +

∆ε

ε∞
Φ2(ρ)

)
= 0, (4.32)

where

Φ1 =ρ

[
ρ2 − 2

(
1− 2ν2 sin2

(
k∆x

2

))
ρ+ 1

]
,

Φ2 =(ρ− 1)2

[
aρ+ b+

M∑
j=1

wj
cjρ+ dj
ρ− e−yjh

]
, (4.33)

ν = c∞∆t/∆x is the CFL number, and c∞ = 1/
√
ε∞µ0 is the maximum phase velocity

in the H-N medium. While Φ2 is not strictly a polynomial, the denominator terms

will cancel when the product is expanded; consequently, ρ = e−yjh, j = 1, 2 . . .M will

not be eigenvalues of the numerical scheme in general. Although compactly written,

Φ(ρ) is in fact the addition of M + 2 polynomials of degree M + 3.

Before characterizing the general behavior of the roots, we first examine a few

important limiting cases. When ∆ε → 0, we see that Φ2 vanishes. Thus, the roots

can be determined analytically as

ρ =
{

0, eiξ, e−iξ, e−y1h, . . . , e−yMh
}
, (4.34)

where the substitution sin ξ
2

= ν sin k∆x
2

is used to define the modes of interest. When

ν > 1, there will be a wave number k∗ for which ν sin k∗∆x
2

= 1. For k > k∗, ξ

will become complex resulting in one of the roots leaving the unit circle; that is,

instability.
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For ν ≤ 1, the roots will both traverse the unit circle from ρ = 1 when k = 0,

and move to ρ = e±iξ
∗

when k∆x = π, where sin ξ∗

2
= ν. The remaining modes are

stationary for all values of k∆x, and are simple zeros that lie along the positive real

axis and will cluster at the origin for larger values of yjh. The polynomial will be a

Schur polynomial [34], leading immediately to stability.

Figure 4.2 Motion of the roots for varying values of k∆x. When r = εs
ε∞

is small, the
roots traverse arcs that approach the unit circle. As r increases, these arcs decrease
in magnitude, so the roots always remain inside the unit disk. The values along the
real axis remain nearly stationary for all k∆x, and will not leave the unit disk.

Next we examine the ratio r = εs/ε∞ →∞; as r becomes large we may neglect

Φ1, but must now deal with a polynomial of degree M + 3, where the none of the

roots are easily tractable, except the obvious root of multiplicity 2 at ρ = 1. Focusing

on the remaining polynomial, we wish to think of the roots as being perturbed from
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some value that is nearly a root of the polynomial. This happens, for instance when

the summation is expanded, and ρ = e−y`h is a zero of all but one of polynomials in

the summation. We thus make use of a standard result in perturbation theory [39]:

Consider a polynomial Φ(ρ) = f(ρ) + εg(ρ), where ρ0 is a root of f(ρ) but not

of g(ρ). Then, if ρ(ε) = ρ0 + ερ1 + · · · is a root of Φ(ρ), we have ρ1 = −g(ρ0)/f ′(ρ0),

which is well-behaved if f ′(ρ0) is bounded away from 0. Now for ρ0 = e−y`h

f = P`(ρ)

(
aρ+ b+

M∑
j 6=`

wj
cjρ+ dj
ρ− e−yjh

)
(ρ− e−y`h)

g = P`(ρ)(c`ρ+ d`) (4.35)

where

P`(ρ) = (ρ− 1)2

M∏
k 6=`

(
ρ− e−ykh

)
(4.36)

and ε = w`. We can now see that indeed ρ0 = e−y`h is a root of f but not of g. A

simple calculation gives

g(ρ0) = P`(e
−y`h)

(
c`e
−y`h + d`

)
f ′(ρ0) = P`(e

−y`h)

(
ae−y`h + b+

M∑
j 6=`

wj
cje
−y`h + dj

e−y`h − e−yjh

)
(4.37)

Thus, e−y`h will be perturbed to first order by an amount

ρ = ρ0 − w`
g(ρ0)

f ′(ρ0)

= e−y`h

1− w`(c`e
−y`h + d`)(

ae−y`h + b+
∑M

j 6=`wj
cje
−y`h+dj

e−y`h−e−yjh

)
 . (4.38)

The second term will always be small and positive. For the weights and nodes

corresponding to Figure 4.1, the right term will vary by several orders of magnitude,

but remain small as O(10−6, 10−2). The larger values of yj will correspond to a more

pronounced contraction from the value ρ0; for smaller yj the roots barely change. A
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numerical investigation has confirmed these results; for various values of r and k∆x,

the roots all remain on the positive axis and are contained in the unit disk. Similarly,

one can show that a root near the origin arises from the coefficients a and b, which

will remain on the negative axis, and is bounded below by −b/a > −1; as r → 1

(∆ε→ 0), this root becomes the zero eigenvalue in (4.34).

Finally the double root at ρ = 1 will be perturbed and become two complex

conjugate roots whose motion is contained in the first and fourth quadrants, respec-

tively. The motion of these roots is illustrated for several values of r in Figure 4.2.

Recall, as r → ∞, these roots coalesce at ρ = 1, and they will only remain on the

unit circle in the case r = 1, or equivalently ∆ε = 0. Thus, we have shown that all

roots are contained within the unit disk for ν ≤ 1, and stability follows immediately.

4.3.2 Phase Error Analysis

In general there will be two sources of error in computing a numerical solution to

the system (4.2): the error incurred when approximating the susceptibility χ(t) for

t ∈ [0, T = N∆t], and the typical local truncation error of the FD-TD method.

The discretization we presented in Section 4.2 allows full control of the first kind of

error that arises from both the local and history part of the polarization law (4.4).

This is done by first prescribing the precisions δK and δM for the local and history

portions respectively; then choosing K acording to (4.22) and finding the minimum

number of terms M which satisfies (4.23). As long as we set δK , δM < h2 then we

are assured that the error introduced over the computational time interval T by the

polarization will be smaller than the local truncation error in time for the FD-TD

method. The results shown below will hold for the implementation of the H-N, C-C

and C-D models.
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We study the phase error of our scheme by analyzing the numerical dispersion

relation. The numerical wave number kK,Mh (ω) satisfies

sin2

(
kK,Mh ∆x

2

)
=

1

ν2
sin2

(
ω∆t

2

)[
1 +

∆ε

ε∞
χ̂K,Mh (ω)

]
, (4.39)

where

χ̂K,Mh (ω) =

(
a+ be−iω∆t +

M∑
j=1

wj
cje
−iω∆t + dje

−2iω∆t

1− e−(yjh+iω∆t)

)
(4.40)

is the approximate susceptibility, the CFL number is ν = c∞∆t/∆x. Similarly, the

Figure 4.3 The phase error decreases for smaller values of h = ∆t/τ , which is the
dominant source of error made in computing the solution in an H-N medium; that is,
the error due to the discretizing the convolution is negligible.

exact dispersion relation is

k2 =

(
ω

c∞

)2 [
1 +

∆ε

ε∞
χ̂(ω)

]
, (4.41)
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where

χ̂(ω) =
1

(1 + (iωτ)α)β
(4.42)

is the scaled susceptibility (with ∆ε = 1). The phase error Φh = |kK,Mh /k − 1| is

plotted for several values of h = ∆t/τ in Figures 4.3 and 4.4; the quadrature used

in each case is the same, and is designed with δK = δM = 10−9 and ∆t = 5 × 10−4;

thus the quadrature should maintain accuracy for ∆t ≥ 5×10−4. Figures 4.3 and 4.4

validate this assertion, and show that the error observed is comprised predominantly

of the discretization error. If ∆t is decreased past the value for which the quadrature

Figure 4.4 The phase error decreases for smaller values of h = ∆t/τ , which is the
dominant source of error made in computing the solution in a C-C medium; that is,
the error due to the discretizing the convolution is negligible.
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is designed, then the quadrature error will eventually dominate the total error, and

further decreasing the step size will not improve the overall accuracy.

We now show the phase error is second-order accurate in ∆t and ∆x. Using the

definitions of a and b in equations (4.15) and (4.16), it can be easily shown that

a+ be−iω∆t =

∫ ∆t

0

χ(t′)L(e−iω∆t)dt′ +O(δK + ∆t2), (4.43)

where χ(t) is approximated using the small time expansion in (4.10), and

L(e−iω∆t) = 1 + (e−iω∆t − 1)
t′

∆t
(4.44)

is the linear interpolant of e−iωt over the interval [0,∆t]. Similarly, the history portion

can be rearranged by invoking the definitions (4.28) of the coefficients, and making

use of a geometric series to show that

M∑
j=1

wj
cje
−iω∆t + dje

−2iω∆t

1− e−(yjh+iω∆t)

=
M∑
j=1

wj
(
cje
−iω∆t + dje

−2iω∆t
) ∞∑
n=0

e−(yjnh+iωn∆t)

=
M∑
j=1

wj

{∫ h

0

(
1− u

h
+
u

h
e−iω∆t

)
e−(yju+iω∆t)du

} ∞∑
n=0

e−(yjnh+iωn∆t)

=

∫ ∆t

0

L
(
e−iω∆t

) ∞∑
n=0

e−iω(n+1)∆t

M∑
j=1

wje
−yj(nh+t′/τ)dt′/τ

=
∞∑
n=1

e−iωn∆t

∫ ∆t

0

L(e−iω∆t)χ(t′ + n∆t)dt′ +O(δM). (4.45)

Recall that δM is the prescribed error used to define the generalized Gaussian nodes,

and is therefore the error made in replacing the sum with the true susceptibility. We

now make use of the fact that the contribution from a and b in (4.43) is precisely the
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n = 0 summand, which we combine to obtain

χ̂K,Mh (ω) ≈
∞∑
n=0

e−iωn∆t

∫ ∆t

0

L(e−iω∆t)χ(t′ + n∆t)dt′ +O(δK + δM)

=
∞∑
n=0

∫ (n+1)∆t

n∆t

χ(t′)e−iωt
′
dt′ +O(δK + δM + ∆t2),

=

∫ ∞
0

χ(t′)e−iωt
′
dt′ +O(∆t2), (4.46)

which is immediately recognized as a second order accurate approximation to the

Fourier transform χ̂, as is desired. This shows explicitly that for a given choice of

δK , δM < O(∆t2), we maintain the second order accuracy of the FD-TD method.

4.4 Numerical Validation

The solution to the system (4.2), (4.4) was computed for signaling data comprised

of short and long-duration pulses and for various values of (α, β). The electric field

at x = 0 is a square impulse of duration td = τ/100 (short pulse) or td = τ (long

pulse), both with unit area so that the low-frequency spectrum is in agreement. Time

traces were recorded at several spatial locations in order to observe the solution. The

simulations are terminated prior to the signal reaching the right-hand boundary, so

that no reflection is encountered.

We first present a validation of our scheme. In these validations, the exact

electric field is calculated independent of the FD-TD scheme, through a numerical

evaluation of the inverse Laplace transform, as according to Chapter 2. We must point

out here that the exact solution is obtained using different numbers of quadrature

points in the inverse Laplace transform, depending on whether a small or large depth

solution is sought. The number of quadrature points are increased until a level of

accuracy that is better than that of the FD-TD scheme is achieved, so that for all

practical purposes, we may call these computations “exact”.
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Figure 4.5 Validation of Cole-Cole model for short depth.

Figure 4.6 Validation of Cole-Cole model for large depth.
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Figure 4.7 Validation of the Havriliak-Negami model at short depth. The program
requires no augmentation to run the C-C and H-N models.

Figure 4.8 Validation of the Havriliak-Negami model at large depth. The program
requires no augmentation to run the C-C and H-N models.
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Figure 4.9 Validation of the Cole-Davidson program for short depth.

Figure 4.10 Validation of the Cole-Davidson program for large depths.
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The solution will exhibit characteristically different behavior at short and large

depths away from the left boundary, x = 0, of the dielectric half-space; thus we show a

validation for each of these spatial regions. The C-C model is validated in Figures 4.5

and 4.6, and the H-N model in Figures 4.7 and 4.8. In both instances the numerical

solution is computed with the same code; the only change is in the parameters α

and β. This demonstrates that our method can treat both of these dielectric models.

When computing the C-D model, we have to change the quadrature accordingly as

shown in (4.7); this augmented scheme is validated in Figures 4.9 and 4.10. In all

three cases, the agreement is very good.

We next consider the L2 error, computed over the computational time interval

T = 300, with respect to the exact solution as computed in Chapter 2, of our model

problem. The convergence of this error is plotted in Figures 4.11-4.13, for several

values of h = ∆t/τ , and α = β = 0.75, at a range of depth spanning four orders of

magnitude. The values of these curves are plotted on a log-log scale, and show second

order accuracy. The observed convergence rate holds for the C-C and C-D models as

well.

In section 4.2, it was shown that for short times, the behavior of the susceptibil-

ity was determined as χ ∼ tαβ−1, t→ 0+. This indicates that for different values of α

and β we would expect similar short time behavior in the electric field if the product

of these is close; this is demonstrated in Figures 4.14-4.17, for the long and short

duration pulses, respectively. Despite the fact that left plots depict a C-C medium,

and the right an H-N medium, the electric field is nearly indistinguishable. The

waveforms shown here capture the transient behavior of the solution, which occurs in

the so called time-domain skin-depth [29]. The initial discontinuities rapidly vanish,

which can be confirmed with an asymptotic investigation of the electric field [30].

The long pulse will remain constant for a longer duration, and so its spectrum will

contain larger amplitudes in the high-frequency regime. Consequently, the larger
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frequencies persist longer into the skin-depth for the longer pulse (note the scale of

the t-axis). The short pulse more closely approximates a delta function, and

Figure 4.11 L2-convergence of the electric field at x = 0.008c∞τ .

so is a good approximation to the impulse response of the material. In this region,

the waveforms will travel at the infinite frequency speed, c∞ = c0/
√
ε∞; past the

skin-depth we see a transition to the static (zero-frequency) speed cs = c0/
√
εs, as

shown in Figure 4.18. While this transition is sudden and clear in a Debye type

medium, the transition is smooth in a general H-N, C-C or C-D medium due to

the continuous distribution of relaxation times. Beyond this transition region, the

susceptibility will be approximated well by χ ∼ t−α−1, t → ∞. This behavior is

shown in Figures 4.19 and 4.20 for the same solutions as shown in Figures 4.14, 4.15,

4.16 and 4.17, observed at a deeper spatial location. Now the transient behavior has

subsided, and the solution will be a material response, determined by the dielectric

parameters; thus, independent of the original signal. The amplitude and shape of the

electric field are very close between the short and long pulses, despite the disparate

starting amplitudes. This is not terribly surprising, since the spectra of the two
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Figure 4.12 L2-convergence of the electric field at x = c∞τ .

Figure 4.13 L2-convergence of the electric field at x = 10c∞τ .
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Figure 4.14 A typical short-depth electric field for a Cole-Cole medium. The
transient behavior is very much the same as an H-N medium with the same product
αβ. The initial pulse duration was td = τ = 1, with amplitude 1.

Figure 4.15 A typical short-depth electric field for a Havriliak-Negami medium.
The transient behavior is very much the same as a C-C medium with the same product
αβ. The initial pulse duration was td = τ = 1, with amplitude 1.
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Figure 4.16 For the same C-C medium, the short-depth plots are shown with a
pulse that is of duration td = τ/100 and amplitude 100.

Figure 4.17 For the same H-N medium, the short-depth plots are shown with a
pulse that is of duration td = τ/100 and amplitude 100.
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signals will have very similar low-frequency content. We can also see the effects of α

and β as shaping parameters on these characteristic waveforms, which is illustrated in

Figures 4.19 and 4.20 by the large depth behavior of the H-N and C-C fields. When

α is increased, the asymmetry and tail of the waveform is increased; decreasing β

narrows the waveform, and raises the peak slightly.

Figure 4.18 The (x, t) location of the peak electric field value is traced for the
Debye and H-N models. All modeling parameters are the same, except α = β = 0.75
in the H-N model. The Debye model undergoes a sudden transition from the ray
defined by c∞ to that of cs, whereas the transition is smooth in the H-N case.

4.5 Conclusion

In this chapter we have developed a novel method to construct time-domain simula-

tions for the family of anomalously dispersive dielectrics represented by the Havriliak-
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Figure 4.19 A typical large-depth electric field for a Cole-Cole medium. The short
and long duration pulses have nearly the same amplitudes at this point in the medium,
despite initially differing in amplitude by two orders of magnitude.

Negami induced polarization model. Specifically we have used the FD-TD method,

and an efficient approximation of the induced polarization convolution using a sum

of exponentials arrived at by applying generalized Gaussian quadratures. The con-

volution kernel is constructed with a preset level of accuracy that is uniform over a

predetermined computational window, and can be set below the expected truncation

error, so that the overall error is second order as in the FD-TD scheme. We explicitly

addressed the C-C, C-D and general H-N cases when constructing these approxima-

tions, and note here that the Debye model can be incorporated as well, simply by

omitting the local portion of the approximation across the first time step (which is

unnecessary), and updating the history portion only at the single exponential node

y = 1; this is equivalent to implementing the Debye model using exponential time

differencing, or evaluating the recurrence relation as shown in section 4.2. We have

also shown using Von Neumann analysis that the overall resulting numerical scheme
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Figure 4.20 A typical large-depth electric field for a Havriliak-Negami medium.
The short and long duration pulses have nearly the same amplitudes at this point in
the medium, despite initially differing in amplitude by two orders of magnitude.

is stable with no additional restriction placed on the time step other than the typical

CFL condition. Numerical simulations confirm the stability and accuracy results,

and we validate the numerical solutions via alternate representations of the exact

solutions using Laplace transforms.



CHAPTER 5

FUTURE WORK

There are several directions that could be taken in continuing this work. One such

direction would be the extension of the H-N model to numerical implementations

of higher order; i.e., a fourth-order numerical scheme. Since the polarization law

(3.4) is given by a temporal operator, we can again suppress the spatial dependence.

The electric field for a typical fourth-order numerical implementation of Maxwell’s

equations [40] is given by

ε∞E
n+1
m + P n+1

m = ε∞E
n
m + P n

m + ∆t

(
1 +

∆t2

24
δ2
t

)
ΛxH

n+1/2
m (5.1)

where we are again computing the TEM propagation as shown in (4.2), and the

numerical operators are given as

δ2
tH

n+1/2
m =

1

∆t2
(
Hn+3/2
m − 2Hn+1/2

m +Hn−1/2
m

)
, (5.2)

ΛxH
n+1/2
m =

1

24∆x

(
H
n+1/2
m−3/2 − 27H

n+1/2
m−1/2 + 27H

n+1/2
m+1/2 −H

n+1/2
m−3/2

)
. (5.3)

A similar expression will hold for the magnetic field equation, and generalization to

higher dimensions follows accordingly. In order to take advantage of the benefits of

the higher order accuracy, the polarization equation must also be augmented. This

will require treatment of both the local and the history approximation. The former of

these follows by replacing the polarization in (3.4) with a cubic polynomial through

the points En, En−1, En−2 and En−3

E(tn − u) = En − u

6h
(11En − 18En−1 + 9En−2 − 2En−3)

+
u2

6h2
(6En − 15En−1 + 12En−2 − 3En−3)

− u3

6h3
(En − 3En−1 + 3En−2 − En−3) +O(h4) (5.4)
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which is valid for 0 < u < 3h. Substitution into equation (3.4) and integration will

yield a multi-step scheme of the form

P n
Loc = AEn − B

6
(11En − 18En−1 + 9En−2 − 2En−3)

+
C

6
(6En − 15En−1 + 12En−2 − 3En−3)

− D

6
(En − 3En−1 + 3En−2 − En−3) +O(h4) (5.5)

with

A =

∫ 3h

0

χ(u)du,

B =

∫ 3h

0

u

h
χ(u)du,

C =

∫ 3h

0

(u
h

)2

χ(u)du,

D =

∫ 3h

0

(u
h

)3

χ(u)du. (5.6)

Similar treatment must be given to the history contribution, which follows from the

same application to the integrals∫ nh

3h

e−yjuE(tn+1 − u)du, j = 1, 2 . . . N. (5.7)

The resulting schemes would be multi-step methods, and as such the stability would

have to be investigated. Additionally, a Runge-Kutta scheme could be used to

approximate the polarization law (3.4).

Another direction that can be pursued is to use the asymptotic investigation

of Chapter 2 to obtain parameters for the H-N media from scattering data; i.e., to

solve the inverse problem. In [30], it was shown in the case of the Debye model that

for large depths, the electric field satisfies an advection-diffusion equation with the

zero-frequency speed cs = 1/
√
µ0ε0εs. This results in a symmetric response, whose

peak is located along the subcharacteristic ray t = x/cs. But in the Cole-Cole model
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[30], the peak was found not to coincide with this ray; rather, it is the mean electric

field that does. When α → 1, the peak and mean electric fields coalesce. More

importantly, we can compute the time at which the mean electric field occurs using

the mean value theorem,

t̄(x) =

∫∞
0
t′E(x, t′)dt′∫∞

0
E(x, t′)dt′

. (5.8)

Upon constructing this quantity, we find that t̄ is a linear function of x, with slope

1/cs. The intercept can be computed by setting x = 0, and doing so provides an

alternate expression in terms of the incident pulse

t̄(x) = t̄(0) +
x

cs
=

∫∞
0
t′f(t′)dt′∫∞

0
f(t′)dt′

+
x

cs
. (5.9)

Note that if we have an experimentally obtained time trace that is recorded at a

known x location, we can approximate t̄. By setting the two expressions equal, we

can then isolate the subcharacteristic speed and in turn obtain εs

εs =
(t̄(x)− t̄(0))2

x2ε0µ0

. (5.10)

This will provide a straightforward manner to compute this model parameter, without

Figure 5.1 Log-log plots comparing large-depth asymptotic approximations of a
step-response to a numerically obtained solution, with α = β = 0.75.

fitting. At this time we are unaware of any analogous procedure to determine the
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parameters ε∞, and τ ; however the late asymptotic response may be used to determine

H-N parameters (α, β). In Figure 5.1, the numerical solution of the electric field with

α = β = 0.75 represents a data set, and is plotted on a log-log scale. The first plot

(left panel) shows the fit when the correct parameters are chosen, and the portion of

the curves to the right of the peaks match. When the correct value of α is found,

but β is not correct, the curves will be parallel in this region, as in right panel. In

both panels of Figure 5.2, the value of α is incorrect, and we can clearly see that the

curves are not parallel as t → ∞. This is true even in the lower left panel, where β

is correct. Thus, we can only proceed with determining β after finding α.

Figure 5.2 Log-log plots comparing large-depth asymptotic approximations of a
step-response to a numerically obtained solution, with α = β = 0.75.
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