1,060 research outputs found

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    Peroxisome Turnover and Diurnal Modulation of Antioxidant Activity in Retinal Pigment Epithelia Utilizes Microtubule-Associated Protein 1 Light Chain 3B (LC3B)

    Get PDF
    The retinal pigment epithelium (RPE) supports the outer retina through essential roles in the retinoid cycle, nutrient supply, ion exchange, and waste removal. Each day the RPE removes the oldest ∼10% of photoreceptor outer segment (OS) disk membranes through phagocytic uptake, which peaks following light onset. Impaired degradation of phagocytosed OS material by the RPE can lead to toxic accumulation of lipids, oxidative tissue damage, inflammation, and cell death. OSs are rich in very long chain fatty acids, which are preferentially catabolized in peroxisomes. Despite the importance of lipid degradation in RPE function, the regulation of peroxisome number and activity relative to diurnal OS ingestion is relatively unexplored. Using immunohistochemistry, immunoblot analysis, and catalase activity assays, we investigated peroxisome abundance and activity at 6 AM, 7 AM (light onset), 8 AM, and 3 PM, in wild-type (WT) mice and mice lacking microtubule-associated protein 1 light chain 3B (Lc3b), which have impaired phagosome degradation. We found that catalase activity, but not the amount of catalase protein, is 50% higher in the morning compared with 3 PM, in RPE of WT, but not Lc3b-/-, mice. Surprisingly, we found that peroxisome abundance was stable during the day in RPE of WT mice; however, numbers were elevated overall in Lc3b-/- mice, implicating LC3B in autophagic organelle turnover in RPE. Our data suggest that RPE peroxisome function is regulated in coordination with phagocytosis, possibly through direct enzyme regulation, and may serve to prepare RPE peroxisomes for daily surges in ingested lipid-rich OS. Copyright © 2019 the American Physiological Society

    Anticholinergic burden in older women: not seeing the wood for the trees?

    Get PDF
    Objectives: To identify medicines contributing to and describe predictors of anticholinergic burden among community-dwelling older Australian women. Design, setting and participants: Retrospective longitudinal analysis of data from the Australian Longitudinal Study on Women's Health linked to Pharmaceutical Benefits Scheme medicines data from 1 January 2008 to 30 December 2010; for 3694 women born in 1921–1926. Main outcome measures: Anticholinergic burden calculated from Anticholinergic Drug Scale (ADS) scores derived from ADS levels (0 to 3) for all medicines used by each woman, summed over each 6-month period (semester), medicines commonly used by women with high semester ADS scores (defined as 75th percentile of scores). Results: 1126 women (59.9%) used at least one medicine with anticholinergic properties. The median ADS score was 4 or 5 across all semesters. Most anticholinergic medicines used by women who had a high anticholinergic burden (ADS score, = 9) had a low anticholinergic potency (ADS level 1). Increasing age, cardiovascular disease, and number of other medicines used were predictive of a higher anticholinergic burden. Conclusions: A high anticholinergic medicines burden in this group was driven by the use of multiple medicines with lower anticholinergic potency rather than the use of medicines with higher potency. This is a novel and important finding for clinical practice as doctors would readily identify the risk of a high anticholinergic burden for patients using high potency medicines, but may be less likely to identify this risk for users of multiple medicines with low anticholinergic potency

    Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays

    Get PDF
    A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity

    Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations

    Full text link
    The `local scaling' hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of stable boundary layers in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of on-going debate. In this work, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. Wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct

    Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation.

    Get PDF
    manuscript received October 15, 2003; revised manuscript received December 15, 2003; accepted December 16, 2003. We thanks P. Rondard, O Bischof, J.-L. Laplanche and J.-P. Pin for their fruitful discussions. we are grateful to S. barrère for her assistance in the statistical analysis of the data and H. McMahon for her assistance in reading the manuscript
    • …
    corecore