22 research outputs found

    Fibroblast-derived MT1-MMP promotes tumor progression in vitro and in vivo

    Get PDF
    BACKGROUND: Identification of fibroblast derived factors in tumor progression has the potential to provide novel molecular targets for modulating tumor cell growth and metastasis. Multiple matrix metalloproteases (MMPs) are expressed by both mesenchymal and epithelial cells within head and neck squamous cell carcinomas (HNSCCs), but the relative importance of these enzymes and the cell source is the subject of controversy. METHODS: The invasive potential of HNSCC tumor cells were assessed in vitro atop type I collagen gels in coculture with wild-type (WT), MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts. A floor of mouth mouse model of HNSCC was used to assess in vivo growth after co-injection of FaDu tumor cells with MMP null fibroblasts. RESULTS: Here we report changes in tumor phenotype when FaDu HNSCCs cells are cocultured with WT, MMP-2 null, MMP-9 null or MT1-MMP null fibroblasts in vitro and in vivo. WT, MMP-2 null and MMP-9 null fibroblasts, but not MT1-MMP null fibroblasts, spontaneously invaded into type I collagen gels. WT fibroblasts stimulated FaDu tumor cell invasion in coculture. This invasive phenotype was unaffected by combination with MMP-9 null fibroblasts, reduced with MMP-2 null fibroblasts (50%) and abrogated in MT1-MMP null fibroblasts. Co-injection of FaDu tumor cells with fibroblasts in an orthotopic oral cavity SCID mouse model demonstrated a reduction of tumor volume using MMP-9 and MMP-2 null fibroblasts (48% and 49%, respectively) compared to WT fibroblasts. Consistent with in vitro studies, MT1-MMP null fibroblasts when co-injected with FaDu cells resulted in a 90% reduction in tumor volume compared to FaDu cells injected with WT fibroblasts. CONCLUSION: These data suggest a role for fibroblast-derived MMP-2 and MT1-MMP in HNSCC tumor invasion in vitro and tumor growth in vivo

    In vitro and in vivo MMP gene expression localisation by In Situ-RT-PCR in cell culture and paraffin embedded human breast cancer cell line xenografts

    Get PDF
    BACKGROUND: Members of the matrix metalloproteinase (MMP) family of proteases are required for the degradation of the basement membrane and extracellular matrix in both normal and pathological conditions. In vitro, MT1-MMP (MMP-14, membrane type-1-MMP) expression is higher in more invasive human breast cancer (HBC) cell lines, whilst in vivo its expression has been associated with the stroma surrounding breast tumours. MMP-1 (interstitial collagenase) has been associated with MDA-MB-231 invasion in vitro, while MMP-3 (stromelysin-1) has been localised around invasive cells of breast tumours in vivo. As MMPs are not stored intracellularly, the ability to localise their expression to their cells of origin is difficult. METHODS: We utilised the unique in situ-reverse transcription-polymerase chain reaction (IS-RT-PCR) methodology to localise the in vitro and in vivo gene expression of MT1-MMP, MMP-1 and MMP-3 in human breast cancer. In vitro, MMP induction was examined in the MDA-MB-231 and MCF-7 HBC cell lines following exposure to Concanavalin A (Con A). In vivo, we examined their expression in archival paraffin embedded xenografts derived from a range of HBC cell lines of varied invasive and metastatic potential. Mouse xenografts are heterogenous, containing neoplastic human parenchyma with mouse stroma and vasculature and provide a reproducible in vivo model system correlated to the human disease state. RESULTS: In vitro, exposure to Con A increased MT1-MMP gene expression in MDA-MB-231 cells and decreased MT1-MMP gene expression in MCF-7 cells. MMP-1 and MMP-3 gene expression remained unchanged in both cell lines. In vivo, stromal cells recruited into each xenograft demonstrated differences in localised levels of MMP gene expression. Specifically, MDA-MB-231, MDA-MB-435 and Hs578T HBC cell lines are able to influence MMP gene expression in the surrounding stroma. CONCLUSION: We have demonstrated the applicability and sensitivity of IS-RT-PCR for the examination of MMP gene expression both in vitro and in vivo. Induction of MMP gene expression in both the epithelial tumour cells and surrounding stromal cells is associated with increased metastatic potential. Our data demonstrate the contribution of the stroma to epithelial MMP gene expression, and highlight the complexity of the role of MMPs in the stromal-epithelial interactions within breast carcinoma

    Usefulness of HPV testing in the follow-up of untreated cervical low grade lesions

    No full text
    The aim of the present work was to evaluate the usefulness of high-risk human papillomavirus (HRHPV) testing for the follow-up of women with untreated low grade cervical squamous cell lesions (LSIL). For that, 412 women with a cytological diagnosis of LSIL at entry were monitored by cytology, HR-HPV testing with the Hybrid Capture II assay (HC-II) and colposcopy. Our primary endpoint was clinical progression defined by the presence of a high grade cervical intraepithelial neoplasia (CIN2 and CIN3) at the biopsy. At baseline, histological control revealed 10 CIN2 and 11 CIN3 only in the cohort of women HR-HPV+. In the follow-up, 4 CIN2 and 8 CIN3 were detected, always in the women initially HR-HPV+. Thus, the recurrence of a HR-HPV+ infection clearly selects a population at high-risk for CIN2-3. The semi-quantitative appreciation of the viral load with HC-II could not be used as a good prognostic factor for the follow-up of women with LSIL. HR-HPV testing reduces the number of cytology and colposcopy examinations in the follow-up of women aged >35 years when HPV testing is initially negative. Thus HR-HPV testing should be reserved for the follow-up of this population of women initially HR-HPV+ and proposed 6 to 12 months after the cytological diagnosis of LSIL
    corecore