86 research outputs found

    Photothermal Spectroscopic Characterization In Teliurite Glasses Codoped With Rare-earth Ions

    Get PDF
    Thermal Lens (TL) and spectroscopic characterizations were performed in 70TeO2-19WO3-7Na2O-4Nb2O 5 (mol%) tellurite glasses. TL measurements were accomplished in Er3+/Tm3+ co-doped tellurite glasses in function of the Tm2O3 concentration (0.4 -1.6 ×1020 ions/cm3). Fluorescence spectra at 488 nm showed that Er 3+/Tm3+co-doped tellurite glasses present several emission bands between (500-1800) nm. However, the more iniense emission bands correspond to the Er3+ and Tm3+ transitions ( 4I13/2 → 4I15/2 and 3F4 → 3H6), respectively. The absolute nonradiative quantum efficiency (φ) was determined by TL method. Higher values of φ were obtained with the increase of Tm2O 3 concentration inside of the Er3+/Tm3+ co-doped tellurite glasses. These results are corroborated by the Judd-Ofelt calculations.6116Ryba-Romanowski, W., Effect of Temperature and activator concentration on luminescence decay of erbium-doped tellurite glass (1990) J. Lumin., 46, pp. 163-172Tanabe, S., Hirao, K., Soga, N., Upconversion fluorescences of TeO2 and Ga2O 3. based oxide glasses containing Er3+ (1990) J. Non-cryst. Solids, 122, pp. 79-82Inoue, S., Nukui, A., Yamamoto, K., Yano, T., Shibata, S., Yamane, M., Refractive index patterning of tellurite glass surfaces by ultra short pulse laser spot heating (2002) J. Mater. Sci., 37, pp. 3459-3465Huang, L., Jha, A., Shen, S., Chung, W.J., Visible emissions at 592 and 613 nm in Er3+-Eu3+ -codoped tellurite fibers (2004) Opt. Commun., 239, pp. 403-408Chillece, E.F., Rodriguez, E., Neves, A.A.R., Moreira, W.C., César, C.L., Barbosa, L.C., Er3+-Tm3+ co-doped tellurite fibers for broadband optical fiber amplifier around 1550 nm band (2005) Opt. Fiber Tech.Tanabe, S., Suzuki, K., Soga, N., Hanada, T., Mechanisms and concentration dependence of Tm3+ blue and Er3+ green up-con version in codoped glasses by red-laser pumping (1995) J. Lumin., 65, pp. 247-255Dai, S.X., Yang, J.H., Liu, Z.P., Wen, L., Hu, L.L., Jiang, Z.H., The luminescence of Er3+, Yb3+, Tm 3+-codoped tellurite glass pumped at 970 nm (2003) Acta Physica Sinica, 52, pp. 729-735Shen, S.X., Jha, A., Huang, L.H., Joshi, P., 980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification (2005) Optics Letters, 30, pp. 1437-1439Shen, X., Nie, Q., Xu, T., Peng, T., Gao, Y., Green and red upconversion emission and energy-transfer between Er 3+ and Tm3+ions in tellurite glasses (2004) Phys. Lett. A, 332, pp. 101-106Daf, S., Yang, J., Xu, S., Dai, N., Hu, L., Jiang, Z., The spectroscopic properties of Er3+, Yb3+, Tm 3+ -codoped tellurite glass (2003) Proc. SPIE, 4990, pp. 150-156. , Rare-Earth-Doped Materials and Devices Vil, S. Jiang, J. Lucas (Eds.)Lima, S.M., Sampaio, J.A., Catuncla, T., Bento, A.C., Miranda, L.C.M., Baesso, M.L., Mode-mismatched thermal lens spcctrometry for thermo-optical properties measurement in optical glasses: A review (2000) J. Non-cryst. Solids, 273, pp. 215-227Sampaio, J.A., Catunda, T., Gama, S., Baesso, M.L., Thermo-optical properties of OH-free erbium-doped low silica calcium aluminosilicate glasses measured by thermal lens technique (2001) J. Non-cryst. Solids, 284, pp. 210-216Lima, S.M., De Camargo, A.S.S., Nunes, L.A.O., Catunda, T., Fluorescence quantum efficiency measurements of excitation and nonradiative deexcitation processes of rare earth 4f-states in chalcogenide glasses (2002) Appl. Phys. Lett., 81, pp. 589-591Oliveira, S.L., Lima, S.M., Catunda, T., Nunes, L.A.O., Rohling, J.H., Bento, A.C., Baesso, M.L., High fluorescence quantum efficiency of 1.8 μm emission in Tm-dopcd low silica calcium aluminate glass determined by thermal lens spectroscopy (2004) Appl. Phys. Lett., 84, pp. 359-361Jacinto, C., Oliveira, S.L., Nunes, L.A.O., Catunda, T., Bell, M.J.V., Thermal lens study of the OH influence on the fluorescence efficiency of Yb3+ -doped phosphate glasses (2005) Appl. Phys. Lett., 86Sampaio, J.A., Gama, S., Baesso, M.L., Catunda, T., Fluorescence quantum efficiency of Er3+ in low silica calcium aluminate glasses determined by mode-mismatched thermal lens spectromctry (2005) J. Non-cryst. Solids, 351, pp. 1594-1602Pilla, V., Lima, S.M., Catunda, T., Medina, A., Baesso, M.L., Jenssen, H.P., Cassanho, A., Thermal quenching of the fluorescence quantum efficiency in colquiriite crystals measured by thermal lens spcctrometry (2004) J. Opt. Soc. Am. B., 21, pp. 1784-1791Pilla, V., Catunda, T., Balogh, D.T., Faria, R.M., Zilio, S.C., Thermal lensing in Polyvinyl alcoholVpolyaniline blends (2002) J. Polym. Sc., Part B Polym. Physics, 40, pp. 1949-1956Lima, S.M., Catunda, T., Lebullenger, R., Hernandes, A.C., Baesso, M.L., Bento, A.C., Miranda, L.C.M., Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry (1999) Phys. Rev. B, 60, pp. 15173-15178Lima, S.M., Sampaio, J.A., Catunda, T., De Camargo, A.S.S., Nunes, L.A.O., Baesso, M.L., Hewak, D.W., Spectroscopy, thermal and optical properties of Nd3+ -doped chalcogenide glasses (2001) J. Non-cryst. Solids, 284, pp. 274-281Zou, X., Izumitani, T., Spectroscopic properties and mechanisms of excited state absorption and energy transfer upconversion for Er3+ -doped glasses (1993) J. Non-cryst. Solids, 162, pp. 68-8

    Synthesis and characterization of 2D-carbonylated graphitic carbon nitride: A promising organic semiconductor for miniaturized sensing devices

    Get PDF
    Miniaturized chemical sensors are desirable for field analysis and screening trials aiming at point-of-care diagnostics. For this purpose, nanostructured materials, including those of the 2D family, are highly promising once they can add to sensing devices improved properties regarding sensitivity, the limit of detection, and portability. Here we report the synthesis, characterization, and application of 2D-carbonylated graphitic carbon nitride (c-g-C3N4) in the modification of screen-printed electrodes for photoelectrochemical analysis. Morphological and structural features of the material were studied through atomic force microscopy, scanning electronic microscopy, transmission electronic microscopy, X-ray diffraction, Fourier transformed-infrared spectrophotometry, and X-ray photoelectron spectroscopy. The optical bandgap of the semiconductor was estimated using diffuse reflectance spectrophotometry. Glucose determination was performed as proof of concept using c-g-C3N4 as support for the immobilization of glucose oxidase and application of the photoelectrochemical sensor. The device presented a linear range from 0 to 5.00 mmol L− 1 and a limit of detection of 0.43 mmol L− 1 . Our results indicate the suitability of employing c-g-C3N4 for designing photoelectrochemical sensors for detecting analytes of biological and medical interest

    Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K

    Get PDF
    In this work the time resolved thermal lens spectrometry was applied to measure the absolute values of the thermo-optical properties of low silica calcium aluminosilicate and soda lime glasses at low temperatures, in the range between 20 and 300 K. The thermal relaxation calorimetry was used as a complementary technique to determine the specific heat. The results showed a marked decrease of the thermal diffusivity with the temperature rise, with a dependence similar to that of the mean free path (similar to T-1) in the interval between 20 and 70 K, while in the range between 70 and 300 K the dependence was T-(0.33 +/- 0.02). The marked variation of the temperature coefficient of the optical path length change with the temperature rise was attributed to the increase in the coefficient of the electronic polarizability. The results also showed that for the aluminosilicate glass the excess in the specific heat correlated to the so-called boson peak occurred at about 17 K, higher than that of soda lime, which occurs at about 12 K. In conclusion, our results showed the ability of the time resolved thermal lens to determine the thermo-optical properties of glasses at low temperatures, bringing possibilities for experiments in a wide range of optical materials.712

    Characterization of the Rabbit Neonatal Fc Receptor (FcRn) and Analyzing the Immunophenotype of the Transgenic Rabbits That Overexpresses FcRn

    Get PDF
    The neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages. We cloned the full length cDNA of the rabbit FcRn alpha-chain and found that it is similar to its orthologous analyzed so far. The rabbit FcRn - IgG contact residues are highly conserved, and based on this we predicted pH dependent interaction, which we confirmed by analyzing the pH dependent binding of FcRn to rabbit IgG using yolk sac lysates of rabbit fetuses by Western blot. Using immunohistochemistry, we detected strong FcRn staining in the endodermal cells of the rabbit yolk sac membrane, while the placental trophoblast cells and amnion showed no FcRn staining. Then, using BAC transgenesis we generated transgenic rabbits carrying and overexpressing a 110 kb rabbit genomic fragment encoding the FcRn. These transgenic rabbits – having one extra copy of the FcRn when hemizygous and two extra copies when homozygous - showed improved IgG protection and an augmented humoral immune response when immunized with a variety of different antigens. Our results in these transgenic rabbits demonstrate an increased immune response, similar to what we described in mice, indicating that FcRn overexpression brings significant advantages for the production of polyclonal and monoclonal antibodies

    South American Hydrological Balance and Paleoceanography during the Late Pleistocene and Holocene (SAMBA) – Cruise No. M125, March 21 – April 15, 2016 - Rio de Janeiro (Brazil) – Fortaleza (Brazil)

    Get PDF
    R/V METEOR expedition M125 (“SAMBA”) focused on the influence of paleoceanographic changes off NE Brazil on the continental hydrological cycle. For this purpose, we obtained 202 m of gravity (24 stations) and piston cores (9) at seven sections on the shelf and continental slope close to river mouths from Cabo Frio in the south to the Rio Sao Francisco in the north. Coring stations were determined after intensive echosounder surveys (total: 1221 NM). On-board foraminiferal biostratigraphy, as well as color and XRF-scanning already provided first stratigraphic constraints, indicating the preservation of different regional paleoclimatic signals at the respective sections. Based on the preliminary stratigraphy, we retrieved high-resolution archives, covering Holocene sediments on the shelf and late Pleistocene sediments on the slope. These high-resolution archives are complemented by long-term records covering up to 900 ka of continuous sedimentation at deeper sites at smaller rivers. For proxy-calibration and the study of present-day sedimentation dynamics and biogeochemical processes, surface sediments were sampled via multicorer (47), Van Veen Grab (6) and box corer (3). Water samples for determination of the water chemistry (trace elements, stable and radiogenic isotopes) and nutrient composition were retrieved by 55 CTD/Rosette casts. In addition, we run multinet-hauls at seven stations to investigate the planktonic foraminiferal communities in the water column down to 700 m water depth, complemented by filtering water from the ship’s pump twice a day

    High-sensitivity absorption coefficients measurements using thermal lens spectrometry

    No full text
    We report on measurements of absorption coefficients (Ae_e) with high-sensitivity (as small as 108^{-8} cm1^{-1}) in liquid and solid samples, using a simple pump-probe thermal lens experiment. Thermo-optical properties required for Ae determination, such as thermal conductivity K, thermal diffusivity D, and temperature coefficients of refractive index dn/dT and optical path length ds/dT, were also obtained. We measure an absorption coefficient at 457 nm of (5.3 ± 0.4)x103^{-3} cm1^{-1} and at 514 nm of (2.50 ± 0.05)x104^{-4} cm1^{-1} for undoped silica glass and Ethylene Glycol, respectively

    Spectroscopic study of ds/dT in commercial filter by using the thermal lens technique

    No full text
    In this work we report on the use of the Thermal Lens method in a spectroscopic form to investigate the dependence of the thermo-optical properties with the probe beam wavelength in a RG – 610 commercial filter close to the absorption maximum (around 650 nm). The measurements were performed using a tunable dye laser as probe source and an Ar+ laser at 514 nm as excitation one. Our results exhibit a strong dependence of the temperature coefficient of the optical path length change with the probe wavelength

    Determination of fluorescence quantum efficiency in solutions by thermal lens measurements at several wavelengths: Application to Rhodamine 6G

    No full text
    In this work the multi-wavelength thermal lens method is introduced as a valuable tool to measure the fluorescence quantum efficiency (η\eta) of luminescent solutions. This methodology exhibits some advantages over conventional methods, like for instance no need to use a reference sample. The Rhodamine was firstly chosen for our study because its properties are very well known. Our results indicate a high η\eta value for Rhodamine (~ 100%)

    Study Of Auger Upconversion Process In Cr\u3csup\u3e3+\u3c/sup\u3e And Nd\u3csup\u3e3+\u3c/sup\u3e Doped Solids

    No full text
    In this work we applied the Thermal Lens (LT) technique to determine the upconversion parameter (γ) for Cr3+: LiSrAlF6, Cr3+: LiSrGaF6, Cr3+: SrAlF5 and Nd3+: ZBLAN. The measures for the Cr3+ doped fluorides were accomplished at 15 °C, to eliminate the suppression effect due to temperature and upon excitation in the cw regime. We used Ar+ laser (488 and 514 nm) and dye (601 nm) laser radiation for the Cr3+ doped crystals and 514 nm and 796.7 nm (Ti-sapphire) for the Nd3+ doped glasses. We observed a nonlinear increase of the TL signal with excitation power, characterizing a fluorescence quantum efficiency (η) decrease that was attributed to the Auger effect. A theoretical model was developed to obtain γ from the TL data. © 2001 SPIE · 0277-786X/01/$15.00
    corecore