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ABSTRACT 
 

Thermal Lens (TL) and spectroscopic characterizations were performed in 70TeO2-19WO3-7Na2O-4Nb2O5  
(mol%) tellurite glasses. TL measurements were accomplished in Er3+ /Tm3+ co-doped tellurite glasses in function of the 
Tm2O3 concentration (0.4 -1.6 x1020 ions/cm3). Fluorescence spectra at 488 nm showed that Er3+ /Tm3+ co-doped tellurite 
glasses present several emission bands between (500-1800) nm. However, the more intense emission bands correspond 
to the Er3+ and Tm3+ transitions (4I13/2 → 4I15/2 and 3F4 → 3H6), respectively.  The absolute nonradiative quantum 
efficiency (ϕ)  was determined by TL method. Higher  values of ϕ  were obtained with the increase of Tm2O3  

concentration inside of the Er3+/Tm3+ co-doped tellurite glasses. These results are corroborated by the Judd-Ofelt 
calculations.  
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1. INTRODUCTION 
 

Tellurite glasses are materials that present high rare earth ions solubility, large amplification bandwidth and 
higher refractive indices than the silicates and fluoride glasses, enhancing the radiative rate and emission cross-section [1-

5]. In this way, these glasses have generated an increasing interest, becoming promising for applications as: optical 
amplifiers, optical recording, laser active media and infrared-to-visible converters [1-9]. Recently, energy transfers 
processes have been studied in rare earth doped and co-doped glasses using fluorescence spectroscopy [4-10]. The work is 
motivated by the interest in basic research phenomena and development of new solid state short-wavelength laser 
materials. In this way, it is very important the characterization of nonlinear optical and thermal-optical properties of the 
glasses, for optimization of the application of these materials. 

Recently, several thermal studies have been made in different kind of glass host structures using Thermal Lens 
(TL) technique [11-16]. However, only Er3+, Tm3+ or Yb3+ were embedded in fluoroindate, silica calcium aluminosilicate, 
chalcogenide and phosphate glasses. In this work, we studied the spectroscopic and thermooptics properties of Er3+/Tm3+  
co-doped tellurite glasses. The measurements were made in function of the Tm2O3 concentration (0.4 -1.6 x1020 

ions/cm3), with the purpose of producing multiphonon relaxation and determining the values of absolute nonradiative 
quantum efficiency (ϕ). Fluorescence spectra were obtained and the measures are in agreement with the results of 
Thermal Lens (TL) technique and Judd-Ofelt (JO) calculations.  
 

2. THEORY 
 

The TL effect is created when the excitation laser beam passes through the sample and the absorbed energy is 
converted into heat, changing the optical path length (s) and producing a lenslike optical element at the sample. The 
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propagation of a probe laser beam (He-Ne laser) through the TL will results in either a spreading (ds/dT<0) or a focusing 
(ds/dT >0) of the beam, depending mainly on the sample temperature coefficients of electronic polarizability, stress and 
thermal expansion. TL effect can be treated through the calculation of the temporal evolution of the sample temperature 
profile ∆T(r,t) caused by a Gaussian intensity distribution of the excitation beam. The variation of probe beam on-axis 
intensity, I(t), can be calculated in cw excitation regime, in the form [11,17,18]:  
 

                                                                                                                                                                                            (1)                     

 
where m = (ωp/ωe)

2, ωp and ωe are respectively the probe and excitation beam radius at the sample; V= z1/zo, z1 is the 
distance between the sample and probe beam waist and zo is the probe beam Rayleigh range; I(0) is the on-axis intensity 
when t, or θ, is zero. In the dual beam (excitation and probe beams), mode-mismatched configuration, the transient signal 
amplitude, θ, is approximately the phase difference of the probe beam at r = 0 and r = 2 ωe induced by the pump beam, 
given by: θ = ΘPeαLeff. In this case, Pe(W) is the excitation power, α (cm-1) the optical absorption coefficient at the 
excitation wavelength (λe), Leff = (1-e-αL)/α is the effective length and L(cm) is the sample thickness. The normalized 
phase shift, Θ , can be expressed as [17]: 

 

     
                                      (2) 

 
where K is the thermal conductivity (W/cmK), λp is the probe beam wavelength and ds/dT is the optical path temperature 
coefficient normalized by sample lengths (K-1) and <λem> the average fluorescence wavelength. The term in parenthesis 
on the right-hand side of Eq. (2) is the fraction of absorbed energy converted into heat (ϕ) or absolute nonradiative 
quantum efficiency (the complementary part is converted into fluorescence). For direct excitation, η is defined as the 
ratio between the measured lifetime (τexp) and the radiative lifetime (τrad), η= τexp/τrad.  
For other side, τc  = ωe

2/4D is the characteristic heat diffusion time, where D=K/ρC is the thermal diffusivity (cm2/s), ρ is 
the density (g/cm3) and C is the specific heat (J/gK).  

3. EXPERIMENTAL 

Samples studied were prepared in the proportion 70TeO2-19WO3-7Na2O-4Nb2O5 (% mol). For Er3+/Tm3+ co-
doped tellurite glasses were added 1.2 x 1020 ions/cm3 of Er2O3 and the concentration of Tm2O3 was varied between (0.4-
1.6) x 1020 ions/cm3. This raw material was melted and homogenized in platinum crucible at 800 0C during 30 minutes 
using a RF induction furnace. All absorbance spectra measurements were carried out with a Perkin Elmer Lambda 9 
spectrophotometer at room temperature, with resolution of 1 nm. The fluorescence spectra were measured by a 
monochromator Spectral Energy connected to either a Silicon PIN or an InAs detector for measurements from (500-
1100) nm or (1000-1800) nm, respectively. The samples were excited with an Ar+ laser at λe = 488 nm. 

The thermooptic properties of tellurite glasses were investigated by TL method [11,17]. TL transient 
measurements were performed using the mode-mismatched dual-beam (excitation and probe) configuration. A He-Ne 
laser (λp= 632.8 nm) was used as the probe beam and either an Ar+ laser (λe= 488 nm) or a Ti-sapphire laser (λe= 785 
nm) was used as the excitation beam. The absorption of the relatively intense excitation beam generates the TL heat 
profile and the induced phase shift, which is proportional to θ. For other side, θ is measured by the weak probe beam that 
counter propagates nearly collinear with the excitation beam. Details of the experimental setup can be found elsewhere 
[11,17,18]. The optical absorption coefficients (α) were determined applying the same experimental configuration used for 
realization of TL measurements. The reflections at the sample surface were considered in α calculus. 

Lifetime (τexp) measurements of the  
4I13/2 → 4I15/2  transition were done using a diode laser at λe= 980 nm (Pe 

≈120 mW). The signal detected by a InGaAs fast response detector, after passing through a bandwidth centred at 1550 
nm band pass filter, was acquired using a digital oscilloscope. 
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4. RESULTS AND DISCUSSIONS 
 
4.1. Spectroscopic properties 
 

The tellurite glasses studied in this paper are presented at Table 1. Absorbance spectra of Tm3+ (0.78 x 10 20 
ions/cm3) doped tellurite  and Er3+/Tm3+ co-doped tellurite (S1.2,0.4) glasses are showed in the Fig. 1 (a-b). The absorption 
bands of Er3+/Tm3+ co-doped tellurite glasses (Fig. 1(b)) that do not appear in Fig. 1 (a) are characteristics of the Er3+ ion. 
 

Tellurite Er3+ 

(10 20 ions/cm3) 
Tm3+ 

(10 20 ions/cm3) 
ξ          ηJO 

S0,0 0 0 - - 
S1.2,0 1.2 0 220 0.93 
S1.2,0.4 1.2 0.39 13 0.34 
S1.2,0.8 1.2 0.78 5 0.28 
S1.2,1.2 1.2 1.2 4 0.18 
S1.2,1.6 1.2 1.6 3 0.15 

Table I- Composition of  the analyzed tellurite glasses. ξ  is the ratio between the fluorescence intensities of the TEr  and TTh 
transitions. ηJO  is the radiative quantum efficiency obtained by Judd-Ofelt method. 

Figure 2 and 3 show the fluorescence spectra of the Er3+ and Er3+/Tm3+ co-doped tellurite glasses. The 
measurements were made under low power laser Pe≈10 mW. The matrix of tellurite glass without rare earth ions 
presented no emission band with intensity comparable to those that measurements were performed. Tm3+ doped tellurite 
glass presented emission bands in ~ 804, 1470 and 1780 nm. For Er3+ doped tellurite glasses, the more intense emission 
band is centered at 1528 nm (Fig. 3 (a)). Er3+/Tm3+ co-doped glasses presented suitable emission bands with those 
measured with the tellurite glass doped either with erbium or thulium (Fig. 2 e 3 (b-c)). In this case, it is possible to 
observe that are more intense, the emission bands correspondent to the transition of Er3+: 4I13/2 → 4I15/2 (TEr) and of Tm3+: 
3F4 → 3H6 (TTh), presented in the Fig. 3. The ratio of the fluorescence intensities (ξ) of the TEr and TTh transitions, are 
presented in the Table I. For Er3+/Tm3+ co-doped tellurite glass with highest concentration of thulium (S1.2,1.6) presents 
the emission intensity TEr just 3 times larger than the emission of TTh  transition. In general form, for Er3+/Tm3+ co-doped 
tellurite glasses, the emission bands between (500-800) nm and (850-1400) nm are respectively ~100 and 5 times less 
intense than the TEr  and TTh emissions. In this form, the emission bands at wavelength < 1400 nm could be neglectful as 
a good approach. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1- Absorbance (-ln(I/I0)) for: (a) Tm3+ (0.78 x 10 20 ions/cm3) doped tellurite glass (L= (1.25 ± 0.03) mm) and (b) 
S1.2,0.4  glass ( L= (1.75 ± 0.03) mm). 
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Figure 2- Fluorescence spectra between (500-1050) nm for (a) S1.2,0 ; (b) S1.2,0.4 and (c) S1.2,1.6 at λe= 488 nm (Pe≈ 10 mW). 
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Figure 3- Fluorescence spectra between (1050-1800) nm for (a) S1.2,0 ; (b) S1.2,0.4 and (c) S1.2,1.6 at λe= 488 nm (Pe≈ 10 mW). 

 
4.2. Thermal lens measurements  
 

Figure 4 shows typical TL transient signals for the Er3+ doped, Tm3+ doped and Er3+/Tm3+ co-doped tellurite 
glasses. The curve behaviors of the Fig. 4 indicate that ds/dT is positive, i.e., the created TL focalize the probe beam in 
the far field. Fitting the experimental data of Fig. 4 by Eq. (1), θ and τc were obtained. From D = we

2/4τc and using the 
measured value we = 2.6×10-3 cm, the thermal diffusivity was determined. The pattern sample, whose thermal properties 
are well known, has been used to test the calibration of our optical system. 
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The medium value of D obtained for Er3+/Tm3+ co-doped tellurite samples in function of thulium concentration, 
at λe= 488 nm and 785 nm, is D = (3.1 ± 0.2)×10-3 cm2/s. This result of D is similar to the values obtained for us to Er3+ 

doped tellurite glass (D = (3.1 ± 0.2)×10-3 cm2/s), Tm3+ doped tellurite glass (D = (3.2 ± 0.4) × 10-3 cm2/s), and for others 
glasses obtained in literature, as: ZBLAN, YABC, PGIZCa, ISZn and InSBZnGdN [11,19].  

In order to calculate ϕ,  we supposed a negligible fluorescence to the tellurite glass without earth rare ion (S0,0), 
where all absorbed energy is converted into heat by the sample, i.e., ϕS0,0 = 1 (ηS0,0 = 0). ΘS0,0 value was determined 
through transient thermal lens measurements. However, normalizing the thermal parameters of erbium (E) and thulium 
(T) co-doped tellurite samples (SE,T), i.e. ΘSE,T by ΘS0,0 value for the undoped tellurite matrix, we obtain: 
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where ΘSE,T = θSE,T  /PeαLeff and θSE,T  is the amplitude of TL signal for Er3+/Tm3+ co-doped tellurite glass. In this case, 
ΘSE,T was changed by ΘS1.2,0, ΘS1.2,0.4, ΘS1.2,0.8, ΘS1.2,1.2 or ΘS1.2,1.6, that correspond the samples S1.2,0, S1.2,0.4, S1.2,0.8, S1.2,1.2 

and S1.2,1.6, respectively (Table I) . ϕ results obtained by TL method are presented in Fig. 5. 
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  Figure 4- TL transient signal normalized by L versus time for Er3+/Tm3+ co-doped tellurite glasses: (a) S0,0, (b) Tm3+ 
(0.78x10 20  ions/cm3) doped tellurite glass, (c) S1.2,0 and (d) S1.2,0.4, respectively. The samples were excited with an Ar+ laser at 488 
nm with Pe = 20 mW and probe laser beam at λp= 632.8 nm. 
 
4.3. Judd-Ofelt (JO) results 

 
The quantum efficiencies for Er3+/Tm3+ co-doped tellurite glasses were determined through the Judd-Ofelt (JO) 

model [5,20,21]. The radiative lifetime value (τrad ) was calculated as being 5.6 ms and using the experimental 
measurements of lifetime τexp at 980 nm, the fluorescence quantum efficiency was estimated by ηJO= τexp/τrad for 

4I13/2 → 
4I15/2 (Table I). Then using the Eq. (3) considering λe= 980 nm, we calculated ϕJO values. The results of ϕJO in function of 
thulium concentration for Er3+/Tm3+ co-doped glasses are presented in the Fig. 5. There are good agreement between 
both TL and JO methods for ϕ. For Er3+ -doped tellurite glass, the difference of the results should be due to resonance at 
980 nm with 4I15/2 → 4I11/2 transition and consequently a decreasing of cross-relaxation process and lose of energy by 
phonons.  
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Finally, Table I shows, by JO theory, an increase of radiative quantum efficiency ~ 6 for the S1.2,0 glass with 
relation to the S1.2,1.6 sample. Then, the presence of thulium (1.6x1020 ions/cm-3) inside of the tellurite matrix co-doped 
with Er3+/Tm3+, corroborate with the lost of energy by phonons, producing an increase of the fraction of energy turned 
into heat, and consequently the quantum efficiency approaches zero. 
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Figure 5- ϕ  versus thulium concentration for Er3+/Tm3+ co-doped tellurite glasses, obtained by TL and JO (open circle) 
methods. 

 
5. CONCLUSIONS 

 
 Spectroscopic characterizations of the Er3+/Tm3+ co-doped tellurite glasses were performed using Thermal Lens 
(TL) and fluorescence techniques at visible wavelength (488 and 785 nm). The behavior of the nonradiative quantum 
efficiency (ϕ) was determined in 70TeO2-19WO3-7Na2O-4Nb2O5 (% mol) tellurite matrix. The measurements were made 
in function of the TmO3 concentration in Er3+/Tm3+ co-doped tellurite glasses and ϕ values are in agreement with the 
results obtained by Judd-Ofelt theory.  
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