296 research outputs found

    Worst-case throughput analysis for parametric rate and parametric actor execution time scenario-aware dataflow graphs

    Get PDF
    Scenario-aware dataflow (SADF) is a prominent tool for modeling and analysis of dynamic embedded dataflow applications. In SADF the application is represented as a finite collection of synchronous dataflow (SDF) graphs, each of which represents one possible application behaviour or scenario. A finite state machine (FSM) specifies the possible orders of scenario occurrences. The SADF model renders the tightest possible performance guarantees, but is limited by its finiteness. This means that from a practical point of view, it can only handle dynamic dataflow applications that are characterized by a reasonably sized set of possible behaviours or scenarios. In this paper we remove this limitation for a class of SADF graphs by means of SADF model parametrization in terms of graph port rates and actor execution times. First, we formally define the semantics of the model relevant for throughput analysis based on (max,+) linear system theory and (max,+) automata. Second, by generalizing some of the existing results, we give the algorithms for worst-case throughput analysis of parametric rate and parametric actor execution time acyclic SADF graphs with a fully connected, possibly infinite state transition system. Third, we demonstrate our approach on a few realistic applications from digital signal processing (DSP) domain mapped onto an embedded multi-processor architecture

    Parametrized dataflow scenarios

    Get PDF
    The FSM-based scenario-aware dataflow (FSM-SADF) model of computation has been introduced to facilitate the analysis of dynamic streaming applications. FSM-SADF interprets application's execution as an execution of a sequence of static modes of operation called scenarios. Each scenario is modeled using a synchronous dataflow (SDF) graph (SDFG), while a finite-state machine (FSM) is used to encode scenario occurrence patterns. However, FSM-SADF can precisely capture only those dynamic applications whose behaviors can be abstracted into a reasonably sized set of scenarios (coarse-grained dynamism). Nevertheless, in many cases, the application may exhibit thousands or even millions of behaviours (fine-grained dynamism). In this work, we generalize the concept of FSM-SADF to one that is able to model dynamic applications exhibiting fine-grained dynamism. We achieve this by applying parametrization to the FSM-SADF's base model, i.e. SDF, and defining scenarios over parametrized SDFGs. We refer to the extension as parametrized FSM-SADF (PFSM-SADF). Thereafter, we present a novel and a fully parametric analysis technique that allows us to derive tight worst-case performance (throughput and latency) guarantees for PFSM-SADF specifications. We evaluate our approach on a realistic case-study from the multimedia domain

    Applications of Computation-In-Memory Architectures based on Memristive Devices

    Get PDF
    Today's computing architectures and device technologies are unable to meet the increasingly stringent demands on energy and performance posed by emerging applications. Therefore, alternative computing architectures are being explored that leverage novel post-CMOS device technologies. One of these is a Computation-in-Memory architecture based on memristive devices. This paper describes the concept of such an architecture and shows different applications that could significantly benefit from it. For each application, the algorithm, the architecture, the primitive operations, and the potential benefits are presented. The applications cover the domains of data analytics, signal processing, and machine learning

    Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with an adaptive move generation procedure

    Get PDF
    The acceptance-probability-controlled simulated annealing with an adaptive move generation procedure, an optimization technique derived from the simulated annealing algorithm, is presented. The adaptive move generation procedure was compared against the random move generation procedure on seven multiminima test functions, as well as on the synthetic data, resembling the optical constants of a metal. In all cases the algorithm proved to have faster convergence and superior escaping from local minima. This algorithm was then applied to fit the model dielectric function to data for platinum and aluminum
    corecore