480 research outputs found

    Berry Phase in Neutrino Oscillations

    Full text link
    We study the Berry phase in neutrino oscillations for both Dirac and Majorana neutrinos. In order to have a Berry phase, the neutrino oscillations must occur in a varying medium, the neutrino-background interactions must depend on at least two independent densities, and also there must be CP violation if the neutrino interactions with matter are mediated only by the standard model W and Z boson exchanges which implies that there must be at least three generations of neutrinos. The CP violating Majorana phases do not play a role in generating a Berry phase. We show that a natural way to satisfy the conditions for the generation of a Berry phase is to have sterile neutrinos with active-sterile neutrino mixing, in which case at least two active and one sterile neutrinos are required. If there are additional new CP violating flavor changing interactions, it is also possible to have a non-zero Berry phase with just two generations.Comment: RevTex 16 pages, no figures, new discussions about sterile neutrino added,typos corrected and errors in references correcte

    Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    Full text link
    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.Comment: 17 pages (RevTeX) + 7 figures (PostScript). Minor changes in text; references added; results unchanged. To appear in PR

    Beta decay of 115-In to the first excited level of 115-Sn: Potential outcome for neutrino mass

    Full text link
    Recent observation of beta decay of 115-In to the first excited level of 115-Sn with an extremely low Q_beta value (Q_beta ~ 1 keV) could be used to set a limit on neutrino mass. To give restriction potentially competitive with those extracted from experiments with 3-H (~2 eV) and 187-Re (~15 eV), atomic mass difference between 115-In and 115-Sn and energy of the first 115-Sn level should be remeasured with higher accuracy (possibly of the order of ~1 eV).Comment: 9 pages, 3 figures; talk at the NANP'05 Conferenc

    Two Gallium data sets, spin flavour precession and KamLAND

    Get PDF
    We reexamine the possibility of a time modulation of the low energy solar neutrino flux which is suggested by the average decrease of the Ga data in line with our previous arguments. We perform two separate fits to the solar neutrino data, one corresponding to 'high' and the other to 'low' Ga data, associated with low and high solar activity respectively. We therefore consider an alternative to the conventional solar+KamLAND fitting, which allows one to explore the much wider range of the θ12\theta_{12} angle permitted by the KamLAND fitting alone. We find a solution with parameters Δm212=8.2×105eV2,tan2θ=0.31\Delta m^2_{21}=8.2\times 10^{-5} eV^2, tan^{2}\theta=0.31 in which the 'high' and the 'low' Ga rates lie far apart and are close to their central values and is of comparable quality to the global best fit, where these rates lie much closer to each other. This is an indication that the best fit in which all solar and KamLAND data are used is not a good measure of the separation of the two Ga data sets, as the information from the low energy neutrino modulation is dissimulated in the wealth of data. Furthermore for the parameter set proposed one obtains an equally good fit to the KamLAND energy spectrum and an even better fit than the 'conventional' LMA one for the reactor antineutrino survival probability as measured by KamLAND.Comment: V2: 15 pages, 3 eps figures, fit improved, final version to appear in Journal of Physics

    A new approach to the front-end readout of cryogenic ionization detectors

    Full text link
    We present a novel approach to the readout of ionization detectors. The solution allows to minimize the number of components and the space occupation close to the detector. This way a minimal impact is added on the radioactive background in those experiments where very low signal rates are expected, such as GERDA and MAJORANA. The circuit consists in a JFET transistor and a remote second stage. The DC feedback path is closed using a diode. Two signal cables are only necessary for biasing and readout.Comment: 14 pages, 15 figures and 15 equation

    Treatment of heart failure with autologous skeletal myoblasts

    Get PDF
    The management of patients with heart failure is a daily challenge for cardiologists and cardiac surgeons. Pharmacotherapy, atrio-biventricular resynchronization, myocardial revascularization, valve repair techniques, latissimus dorsi cardiomyoplasty, acorn cardiac support device, heart transplantation and mechanical assist devices do not cover all the needs. The recent progress in cellular and molecular biology allows the development of new therapies for heart failure. Transplantation of Autologous Cells: One of the most innovative consists in the transplantation of autologous ex-vivo expanded cells into the myocardium for heart muscle regeneration. This approach is called “cellular cardiomyoplasty”

    Comparative analysis of the complete genome sequence of the California MSW strain of myxoma virus reveals potential host adaptations

    No full text
    Myxomatosis is a rapidly lethal disease of European rabbits that is caused by myxoma virus (MYXV). The introduction of a South American strain of MYXV into the European rabbit population of Australia is the classic case of host-pathogen coevolution following cross-species transmission. The most virulent strains of MYXV for European rabbits are the Californian viruses, found in the Pacific states of the United States and the Baja Peninsula, Mexico. The natural host of Californian MYXV is the brush rabbit, Sylvilagus bachmani. We determined the complete sequence of the MSW strain of Californian MYXV and performed a comparative analysis with other MYXV genomes. The MSW genome is larger than that of the South American Lausanne (type) strain of MYXV due to an expansion of the terminal inverted repeats (TIRs) of the genome, with duplication of the M156R, M154L, M153R, M152R, and M151R genes and part of the M150R gene from the right-hand (RH) end of the genome at the left-hand (LH) TIR. Despite the extreme virulence of MSW, no novel genes were identified; five genes were disrupted by multiple indels or mutations to the ATG start codon, including two genes, M008.1L/R and M152R, with major virulence functions in European rabbits, and a sixth gene, M000.5L/R, was absent. The loss of these gene functions suggests that S. bachmani is a relatively recent host for MYXV and that duplication of virulence genes in the TIRs, gene loss, or sequence variation in other genes can compensate for the loss of M008.1L/R and M152R in infections of European rabbits.This work was funded in part by grant R01 AI093804 from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. E.C.H. was supported by an NHMRC Australia Fellowship, and D.C.T. was supported by an ARC Future Fellowship

    Theoretical Prospects of Neutrinoless Double Beta Decay

    Full text link
    The compelling experimental evidences for oscillations of solar and atmospheric neutrinos imply the existence of 3-neutrino mixing in vacuum. We briefly review the phenomenology of 3-neutrino mixing, and the current data on the 3-neutrino mixing parameters. The open questions and the main goals of future research in the field of neutrino mixing and oscillations are outlined. The predictions for the effective Majorana mass || in neutrinoless double beta (bb0nu-) decay in the case of 3-neutrino mixing and massive Majorana neutrinos are reviewed. The physics potential of the experiments, searching for bb0nu-decay and having sensitivity approximately 10 times better than the presently reached, for providing information on the type of the neutrino mass spectrum, on the absolute scale of neutrino masses and on the Majorana CP-violation phases in the PMNS neutrino mixing matrix, is discussed.Comment: 15 pages, 2 postscript figures, LATEX; Invited talk given at the Nobel Symposium (N 129) on Neutrino Physics, August 19 - 24, 2004, Haga Slott, Enkoping, Swede

    Bi-Large Neutrino Mixing See-Saw Mass Matrix with Texture Zeros and Leptogenesis

    Full text link
    We study constraints on neutrino properties from texture zeros in bi-large mixing See-Saw mass matrix and also from leptogenesis. Texture zeros may occur in the light (class a)) or in the heavy (class b)) neutrino mass matrices. Each of these two classes has 5 different forms which can produce non-trivial three generation mixing with at least one texture zero. We find that two types of texture zero mass matrices in both class a) and class b) can be consistent with present data on neutrino masses, mixing and produce the observed baryon asymmetry of the universe. None of the neutrinos can have zero masses with the lightest of the light neutrinos having a mass larger than about 0.039 eV for class a) and 0.002 eV for class b). In these models although CKM CP violating phase vanishes, non-zero Majorana phases, however, can exist and play an important role in producing the observed baryon asymmetry in our universe through leptogenesis mechanism. The requirement of producing the observed baryon asymmetry can further distinguish different models and also restrict the See-Saw scale to be in the range 1012101510^{12}\sim 10^{15} GeV.Comment: 21 pages, 7 figures revised version, some references added, to be submitted to PR
    corecore