9 research outputs found

    Functional analysis of the EsaB component of the<i> Staphylococcus aureus</i> Type VII secretion system

    Get PDF
    This study was supported by the Wellcome Trust (through Investigator Award 10183/Z/15/Z to TP and through Clinical PhD studentship support to CPH through grant 104241/z/14/z), the Biotechnology and Biological Sciences Research Council and the Medical Research Council (through grants BB/H007571/1 and MR/M011224/1, respectively).Type VII secretion systems (T7SS) are found in many bacteria and secrete proteins involved in virulence and bacterial competition. In Staphylococcus aureus the small ubiquitin-like EsaB protein has been previously implicated as having a regulatory role in the production of the EsxC substrate. Here we show that in the S. aureus RN6390 strain, EsaB does not genetically regulate production of any T7 substrates or components, but is indispensable for secretion activity. Consistent with EsaB being an essential component of the T7SS, loss of either EsaB or EssC are associated with upregulation of a common set of iron acquisition genes. However, a further subset of genes were dysregulated only in the absence of EsaB. Quantitative western blotting indicates that EsaB is present at very low levels in cells. Substitution of a highly conserved threonine for alanine or arginine resulted in a loss of EsaB activity and destabilisation of the protein. Taken together our findings show that EsaB is essential for T7SS activity in RN6390.Publisher PDFPeer reviewe

    The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity

    Get PDF
    We thank the core sequencing and informatics teams at the Sanger Institute for their assistance and The Wellcome Trust for its support of the Sanger Institute Pathogen Genomics and Biology groups. SRH, JP and MTGH were supported by Wellcome Trust grant 098051. Bioinformatics and Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit that is funded by a Wellcome Trust ISSF award (grant 105621/Z/14/Z). SP is funded by the UKCRC Translational Infection Research Initiative, and the NIHR Cambridge Biomedical Research Centre. CPH is supported by the Wellcome Trust (grant number 104241/z/14/z) TP is a Royal Society/Wolfson Merit Award Holder.BACKGROUND: Type VII protein secretion (T7SS) is a specialised system for excreting extracellular proteins across bacterial cell membranes and has been associated with virulence in Staphylococcus aureus. The genetic diversity of the ess locus, which encodes the T7SS, and the functions of proteins encoded within it are poorly understood. RESULTS: We used whole genome sequence data from 153 isolates representative of the diversity of the species to investigate the genetic variability of T7SS across S. aureus. The ess loci were found to comprise of four distinct modules based on gene content and relative conservation. Modules 1 and 4, comprising of the 5' and 3' modules of the ess locus, contained the most conserved clusters of genes across the species. Module 1 contained genes encoding the secreted protein EsxA, and the EsaAB and EssAB components of the T7SS machinery, and Module 4 contained two functionally uncharacterized conserved membrane proteins. Across the species four variants of Module 2 were identified containing the essC gene, each of which was associated with a specific group of downstream genes. The most diverse module of the ess locus was Module 3 comprising a highly variable arrangement of hypothetical proteins. RNA-Seq was performed on representatives of the four Module 2 variants and demonstrated strain-specific differences in the levels of transcription in the conserved Module 1 components and transcriptional linkage Module 2, and provided evidence of the expression of genes the variable regions of the ess loci. CONCLUSIONS: The ess locus of S. aureus exhibits modularity and organisational variation across the species and transcriptional variation. In silico analysis of ess loci encoded hypothetical proteins identified potential novel secreted substrates for the T7SS. The considerable variety in operon arrangement between otherwise closely related isolates provides strong evidence for recombination at this locus. Comparison of these recombination regions with each other, and with the genomes of other Staphylococcal species, failed to identify evidence of intra- and inter-species recombination, however the analysis identified a novel T7SS in another pathogenic staphylococci, Staphylococcus lugdunensis.Publisher PDFPeer reviewe

    Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice.

    Get PDF
    BACKGROUND: The spread of drug-resistant bacterial pathogens poses a major threat to global health. It is widely recognised that the widespread use of antibiotics has generated selective pressures that have driven the emergence of resistant strains. Methicillin-resistant Staphylococcus aureus (MRSA) was first observed in 1960, less than one year after the introduction of this second generation beta-lactam antibiotic into clinical practice. Epidemiological evidence has always suggested that resistance arose around this period, when the mecA gene encoding methicillin resistance carried on an SCCmec element, was horizontally transferred to an intrinsically sensitive strain of S. aureus. RESULTS: Whole genome sequencing a collection of the first MRSA isolates allows us to reconstruct the evolutionary history of the archetypal MRSA. We apply Bayesian phylogenetic reconstruction to infer the time point at which this early MRSA lineage arose and when SCCmec was acquired. MRSA emerged in the mid-1940s, following the acquisition of an ancestral type I SCCmec element, some 14 years before the first therapeutic use of methicillin. CONCLUSIONS: Methicillin use was not the original driving factor in the evolution of MRSA as previously thought. Rather it was the widespread use of first generation beta-lactams such as penicillin in the years prior to the introduction of methicillin, which selected for S. aureus strains carrying the mecA determinant. Crucially this highlights how new drugs, introduced to circumvent known resistance mechanisms, can be rendered ineffective by unrecognised adaptations in the bacterial population due to the historic selective landscape created by the widespread use of other antibiotics

    Haem-iron plays a key role in the regulation of the Ess/Type VII secretion system of <i>Staphylococcus aureus</i> RN6390

    Get PDF
    This study was supported by the Wellcome Trust (through Investigator Award 10183/Z/15/Z to T. P. and through Clinical PhD studentship support to C. P. H. through grant 104241/z/14/z), the Biotechnology and Biological Sciences Research Council and the Medical Research Council (through grants BB/H007571/1 and MR/M011224/1, respectively).The Staphylococcus aureus type VII protein secretion system (T7SS) plays important roles in virulence and intra-species competition. Here we show that the T7SS in strain RN6390 is activated by supplementing the growth medium with haemoglobin, and its cofactor haemin (haem B). Transcript analysis and secretion assays suggest that activation by haemin occurs at a transcriptional and a post-translational level. Loss of T7 secretion activity by deletion of essC results in upregulation of genes required for iron acquisition. Taken together these findings suggest that the T7SS plays a role in iron homeostasis in at least some S. aureus strains.Publisher PDFPeer reviewe

    The Microevolution and Epidemiology of Staphylococcus aureus Colonization during Atopic Eczema Disease Flare.

    Get PDF
    Staphylococcus aureus is an opportunistic pathogen and variable component of the human microbiota. A characteristic of atopic eczema (AE) is colonization by S. aureus, with exacerbations associated with an increased bacterial burden of the organism. Despite this, the origins and genetic diversity of S. aureus colonizing individual patients during AE disease flares is poorly understood. To examine the microevolution of S. aureus colonization, we deep sequenced S. aureus populations from nine children with moderate to severe AE and 18 non-atopic children asymptomatically carrying S. aureus nasally. Colonization by clonal S. aureus populations was observed in both AE patients and control participants, with all but one of the individuals carrying colonies belonging to a single sequence type. Phylogenetic analysis showed that disease flares were associated with the clonal expansion of the S. aureus population, occurring over a period of weeks to months. There was a significant difference in the genetic backgrounds of S. aureus colonizing AE cases versus controls (Fisher exact test, P = 0.03). Examination of intra-host genetic heterogeneity of the colonizing S. aureus populations identified evidence of within-host selection in the AE patients, with AE variants being potentially selectively advantageous for intracellular persistence and treatment resistance.CPH was supported by Wellcome Trust (grant number 104241/z/14/z). MTGH, KAP, and KO were supported by the Scottish Infection Research Network and Chief Scientist Office through the Scottish Healthcare Associated Infection Prevention Institute consortium funding (CSO reference: SIRN10). Bioinformatics and computational biology analyses were supported by the University of St Andrews Bioinformatics Unit that is funded by a Wellcome Trust ISSF award (grant 097831/Z/11/Z). JP and MTGH were supported by Wellcome Trust grant 098051. AEM is supported by Biotechnology and Biological Sciences Research Council grant BB/M014088/1. SJB is supported by a Wellcome Trust Senior Research Fellowship in Clinical Science (106865/Z/15/Z)
    corecore