94 research outputs found

    Evidence of a Lombard response in migrating humpback whales (Megaptera novaeangliae)

    Get PDF
    The Lombard reflex is an increase in the subject's vocal levels in response to increased noise levels. This functions to maintain an adequate signal-to-noise ratio at the position of the receiver when noise levels vary. While it has been demonstrated in a small number of mammals and birds including some whales, it has not yet been shown to occur in one of the most vocal species of baleen whale, the humpback whale (Megaptera novaeangliae). Humpback whales were simultaneously visually and acoustically tracked (using an array of calibrated hydrophone buoys) as they migrated southward. Source levels of social vocalizations were estimated from measured received levels and a site-specific empirical sound propagation model developed. In total, 226 social vocalizations from 16 passing groups of whales were selected for final analysis. Noise levels were predominantly wind-dependent (from sea surface motion) and ranged from 81 to 108 dB re 1 mu Pa in the 36Hz-2.8 kHz band. Vocalization source levels increased by 0.9 dB for every 1 dB increase in wind-dependent background noise levels, with source levels (at 1 m) being maintained similar to 60 dB above the noise level. (C) 2014 Acoustical Society of America

    Passive acoustics as a key to the study of marine animals

    Get PDF

    Source levels of social sounds in migrating humpback whales (Megaptera novaeangliae)

    Get PDF
    The source level of an animal sound is important in communication, since it affects the distance over which the sound is audible. Several measurements of source levels of whale sounds have been reported, but the accuracy of many is limited because the distance to the source and the acoustic transmission loss were estimated rather than measured. This paper presents measurements of source levels of social sounds (surface-generated and vocal sounds) of humpback whales from a sample of 998 sounds recorded from 49 migrating humpback whale groups. Sources were localized using a wide baseline five hydrophone array and transmission loss was measured for the site. Social vocalization source levels were found to range from 123 to 183 dB re 1 mu Pa @ 1 m with a median of 158 dB re 1 mu Pa @ 1 m. Source levels of surface-generated social sounds ("breaches" and "slaps") were narrower in range (133 to 171 dB re 1 mu Pa @ 1 m) but slightly higher in level (median of 162 dB re 1 mu Pa @ 1 m) compared to vocalizations. The data suggest that group composition has an effect on group vocalization source levels in that singletons and mother-calf-singing escort groups tend to vocalize at higher levels compared to other group compositions. VC 2013 Acoustical Society of America

    Information theory analysis of Australian humpback whale song

    Get PDF
    Songs produced by migrating whales were recorded off the coast of Queensland, Australia, over six consecutive weeks in 2003. Forty-eight independent song sessions were analyzed using information theory techniques. The average length of the songs estimated by correlation analysis was approximately 100 units, with song sessions lasting from 300 to over 3100 units. Song entropy, a measure of structural constraints, was estimated using three different methodologies: (1) the independently identically distributed model, (2) a first-order Markov model, and (3) the nonparametric sliding window match length (SWML) method, as described by Suzuki et al. [(2006). “Information entropy of humpback whale song,” J. Acoust. Soc. Am. 119, 1849–1866]. The analysis finds that the song sequences of migrating Australian whales are consistent with the hierarchical structure proposed by Payne and McVay [(1971). “Songs of humpback whales,” Science 173, 587–597], and recently supported mathematically by Suzuki et al. (2006) for singers on the Hawaiian breeding grounds. Both the SWML entropy estimates and the song lengths for the Australian singers in 2003 were lower than that reported by Suzuki et al. (2006) for Hawaiian whales in 1976–1978; however, song redundancy did not differ between these two populations separated spatially and temporally. The average total information in the sequence of units in Australian song was approximately 35 bits/song. Aberrant songs (8%) yielded entropies similar to the typical songs

    A study of the behavioural response of whales to the noise of seismic air guns: design, methods and progress

    Get PDF
    The concern about the effects of the noise of human activities on marine mammals, particularly whales, has led to a substantial amount of research but there is still much that is not understood, particularly in terms of the behavioural responses to noise and the longer term biological consequences of these responses. There are many challenges in conducting experiments that adequately assess behavioural reactions of whales to noise. These include the need to obtain an adequate sample size with the necessary controls and to measure the range of variables likely to affect the observed response. Analysis is also complex. Well designed experiments are complex and logistically difficult, and thus expensive. This paper discusses the challenges involved and how these are being met in a major series of experiments in Australian waters on the response of humpback whales to the noise of seismic airgun arrays. The project is known as BRAHSS (Behavioural Response of Australian Humpback whales to Seismic Surveys) and aims to provide the information that will allow seismic surveys to be conducted efficiently with minimal impact on whales. It also includes a study of the response to ramp-up in sound level which is widely used at the start of operations, but for which there is little information to show that it is effective. BRAHSS also aims to infer the longer term biological significance of the responses from the results and the knowledge of normal behaviour. The results are expected to have relevance to other sources and species

    Project BRAHSS: behavioural response of Australian humpback whales to seismic surveys.

    Get PDF
    BRAHSS is a major project aimed at understanding how humpback whales respond to noise, particularly from seismic air gun arrays. It also aims to infer the longer term biological significance of the responses from the results and knowledge of normal behaviour. The aim is to provide the information that will allow seismic surveys to be conducted efficiently with minimal impact on whales. It also includes a study of the response to ramp-up in sound level. Ramp-up is widely used at the start of operations as a mitigation measure intended to cause whales to move away, but there is little information to show that it is effective. BRAHSS involves four experiments with migrating humpback whales off the east and west coasts of Australia with noise exposures ranging from a single air gun to a full seismic array. Two major experiments have been completed off the east coast, the second involving 70 scientists. Whale movements were tracked using theodolites on two high points ashore and behavioural observations were made from these points and from three small vessels and the source vessel. Vocalising whales were tracked underwater with an array of hydrophones. These and other moored acoustic receivers recorded the sound field at several points throughout the area. Tags (DTAGs) were attached to whales with suction caps for periods of several hours. Observations and measurements during the experiments include the wide range of variables likely to affect whale response and sufficient acoustic measurements to characterise the sound field throughout the area. The remaining two experiments will be conducted further off shore off the west coast in 2013 and 2014

    Evening choruses in the Perth Canyon and their potential link with Myctophidae fishes

    Get PDF
    An evening chorus centered at near 2.2 kHz was detected across the years 2000 to 2014 from seabed receivers in 430-490 m depth overlooking the Perth Canyon, Western Australia. The chorus reached a maximum level typically 2.1 h post-sunset and normally ran for 2.1 h (between 3 dB down points). It was present at lower levels across most of the hours of darkness. Maximum chorus spectrum levels were 74-76 dB re 1 µPa2/Hz in the 2 kHz 1/3 octave band, averaging 6-12 dB and up to 30 dB greater than pre-sunset levels. The chorus displayed highest levels over April to August each year with up to 10 dB differences between seasons. The spatial extent of the chorus was not determined but exceeded the sampling range of 13-15 km offshore from the 300 m depth contour and 33 km along the 300 m depth contour. The chorus comprised short damped pulses. The most likely chorus source is considered to be fishes of the family Myctophidae foraging in the water column. The large chorus spatial extent and its apparent correlation with regions of high productivity suggest it may act as an acoustic beacon to marine fauna indicating regions of high biomass

    A study of the behavioural response of whales to the noise of seismic air guns: Design, methods and progress

    Get PDF
    The concern about the effects of the noise of human activities on marine mammals, particularly whales, has led to a substantial amount of research but there is still much that is not understood, particularly in terms of the behavioural responses to noise and the longer term biological consequences of these responses. There are many challenges in conducting experiments that adequately assess behavioural reactions of whales to noise. These include the need to obtain an adequate sample size with the necessary controls and to measure the range of variables likely to affect the observed response. Analysis is also complex. Well designed experiments are complex and logistically difficult, and thus expensive. This paper discusses the challenges involved and how these are being met in a major series of experiments in Australian waters on the response of humpback whales to the noise of seismic airgun arrays. The project is known as BRAHSS (Behavioural Response of Australian Humpback whales to Seismic Surveys) and aims to provide the information that will allow seismic surveys to be conducted efficiently with minimal impact on whales. It also includes a study of the response to ramp-up in sound level which is widely used at the start of operations, but for which there is little information to show that it is effective. BRAHSS also aims to infer the longer term biological significance of the responses from the results and the knowledge of normal behaviour. The results are expected to have relevance to other sources and species

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ∼0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.publishedVersio
    corecore