162 research outputs found

    Diffuse retro-reflective imaging for improved mosquito tracking around human baited bednets

    Get PDF
    Robust imaging techniques for tracking insects have been essential tools in numerous laboratory and field studies on pests, beneficial insects and model systems. Recent innovations in optical imaging systems and associated signal processing have enabled detailed characterisation of nocturnal mosquito behaviour around bednets and improvements in bednet design, a global essential for protecting populations against malaria. Nonetheless, there remain challenges around ease of use for large scale in situ recordings and extracting data reliably in the critical areas of the bednet where the optical signal is attenuated. Here we introduce a retro-reflective screen at the back of the measurement volume, which can simultaneously provide diffuse illumination, and remove optical alignment issues whilst requiring only one-sided access to the measurement space. The illumination becomes significantly more uniform, although, noise removal algorithms are needed to reduce the effects of shot noise particularly across low intensity bednet regions. By systematically introducing mosquitoes in front and behind the bednet in lab experiments we are able to demonstrate robust tracking in these challenging areas. Overall, the retro-reflective imaging setup delivers mosquito segmentation rates in excess of 90% compared to less than 70% with back-lit systems

    Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact

    Get PDF
    Long-lasting insecticidal bed nets (LLINs) protect humans from malaria transmission and are fundamental to malaria control worldwide, but little is known of how mosquitoes interact with nets. Elucidating LLIN mode of action is essential to maintain or improve efficacy, an urgent need as emerging insecticide resistance threatens their future. Tracking multiple free-flying Anopheles gambiae responding to human-occupied bed nets in a novel large-scale system, we characterised key behaviours and events. Four behavioural modes with different levels of net contact were defined: swooping, visiting, bouncing and resting. Approximately 75% of all activity occurred at the bed net roof where multiple brief contacts were focussed above the occupant’s torso. Total flight and net contact times were lower at LLINs than untreated nets but the essential character of the response was unaltered. LLINs did not repel mosquitoes but impacted rapidly: LLIN contact of less than 1 minute per mosquito during the first ten minutes reduced subsequent activity; after thirty minutes, activity at LLINs was negligible. Velocity measurements showed that mosquitoes detected nets, including unbaited untreated nets, prior to contact. This is the most complete characterisation of mosquito-LLIN interactions to date, and reveals many aspects of LLIN mode of action, important for developing the next generation of LLINs

    Diffuse retro-reflective imaging for improved video tracking of mosquitoes at human baited bednets

    Get PDF
    Robust imaging techniques for tracking insects have been essential tools in numerous laboratory and field studies on pests, beneficial insects and model systems. Recent innovations in optical imaging systems and associated signal processing have enabled detailed characterization of nocturnal mosquito behaviour around bednets and improvements in bednet design, a global essential for protecting populations against malaria. Nonetheless, there remain challenges around ease of use for large-scale in situ recordings and extracting data reliably in the critical areas of the bednet where the optical signal is attenuated. Here, we introduce a retro-reflective screen at the back of the measurement volume, which can simultaneously provide diffuse illumination, and remove optical alignment issues while requiring only one-sided access to the measurement space. The illumination becomes significantly more uniform, although noise removal algorithms are needed to reduce the effects of shot noise, particularly across low-intensity bednet regions. By systematically introducing mosquitoes in front of and behind the bednet in laboratory experiments, we are able to demonstrate robust tracking in these challenging areas. Overall, the retro-reflective imaging set-up delivers mosquito segmentation rates in excess of 90% compared to less than 70% with backlit systems

    Improved three-dimensional localization of multiple small objects in close proximity in digital holography

    Get PDF
    Using intensity gradient- or sparsity-based focus metrics, the ability to accurately localize the three-dimensional (3D) position of a small object in a digital holographic reconstruction of a large field of view is hindered in the presence of multiple nearby objects. A more accurate alternative method for 3D localization, based on evaluation of the complex reconstructed volume, is proposed. Simulations and experimental data demonstrate a reduction in depth positional error for single objects and a notably improved axial resolution of multiple objects in close proximity

    A novel video-tracking system to quantify the behaviour of nocturnal mosquitoes attacking human hosts in the field

    Get PDF
    Many vectors of malaria and other infections spend most of their adult life within human homes, the environment where they bloodfeed and rest, and where control has been most successful. Yet, knowledge of peri-domestic mosquito behaviour is limited, particularly how mosquitoes find and attack human hosts or how insecticides impact on behaviour. This is partly because technology for tracking mosquitoes in their natural habitats, traditional dwellings in disease-endemic countries, has never been available. We describe a sensing device that enables observation and recording of nocturnal mosquitoes attacking humans with or without a bed net, in the laboratory and in rural Africa. The device addresses requirements for sub-millimetre resolution over a 2.0 x 1.2 x 2.0 m volume while using minimum irradiance. Data processing strategies to extract individual mosquito trajectories and algorithms to describe behaviour during host/net interactions are introduced. Results from UK laboratory and Tanzanian field tests showed that Culex quinquefasciatus activity was higher and focused on the bed net roof when a human host was present, in colonized and wild populations. Both C. quinquefasciatus and Anopheles gambiae exhibited similar behavioural modes, with average flight velocities varying by less than 10%. The system offers considerable potential for investigations in vector biology and many other fields

    Placenta accreta spectrum - variations in clinical practice and maternal morbidity between UK and France : a population-based comparative study

    Get PDF
    SM’s DPhil was funded by the Medical Research Council. PACCRETA was funded by PACCRETA was funded by the French Health Ministry under its Clinical Research Hospital Program (grant number: AOR12156) and by the Angers University Hospital.Peer reviewedPublisher PD

    Host-seeking activity of a Tanzanian population of Anopheles arabiensis at an insecticide treated bed net

    Get PDF
    Background: Understanding how mosquitoes respond to long lasting insecticide treated nets (LLINs) is fundamental to sustaining the effectiveness of this essential control tool. We report on studies with a tracking system to investigate behaviour of wild anophelines at an LLIN, in an experimental hut at a rural site in Mwanza, Tanzania. Methods: Groups of adult female mosquitoes (n = 10 per replicate) reared from larvae of a local population, identified as predominantly (95%) Anopheles arabiensis, were released in the hut. An infrared video tracking system recorded flight and net contact activity over 1 h as the mosquitoes attempted to reach a supine human volunteer within a bed net (either a deltamethrin-treated LLIN or an untreated control net). A range of activities, including flight path, position in relation to the bed net and duration of net contact, were quantified and compared between treatments. Results: The total time that female An. arabiensis spent in flight around LLINs was significantly lower than at untreated nets [F(1,10) = 9.26, p = 0.012], primarily due to a substantial reduction in the time mosquitoes spent in persistent ‘bouncing’ flight [F(1,10) = 18.48, p = 0.002]. Most activity occurred at the net roof but significantly less so with LLINs (56.8% of total) than untreated nets [85.0%; Χ2 (15) = 234.69, p < 0.001]. Activity levels at the bed net directly above the host torso were significantly higher with untreated nets (74.2%) than LLINs [38.4%; Χ2 (15) = 33.54, p = 0.004]. ‘Visiting’ and ‘bouncing’ rates were highest above the volunteer’s chest in untreated nets (39.9 and 50.4%, respectively) and LLINs [29.9 and 42.4%; Χ2 (13) = 89.91, p < 0.001; Χ2 (9) = 45.73, p < 0.001]. Highest resting rates were above the torso in untreated nets [77%; Χ2 (9) = 63.12, p < 0.001], but in LLINs only 33.2% of resting occurred here [Χ2 (9) = 27.59, p = 0.001], with resting times spread between the short vertical side of the net adjacent to the volunteer’s head (21.8%) and feet (16.2%). Duration of net contact by a single mosquito was estimated at 204–290 s on untreated nets and 46–82 s on LLINs. While latency to net contact was similar in both treatments, the reduction in activity over 60 min was significantly more rapid for LLINs [F(1,10) = 6.81, p = 0.026], reiterating an ‘attract and kill’ rather than a repellent mode of action. Conclusions: The study has demonstrated the potential for detailed investigations of behaviour of wild mosquito populations under field conditions. The results validate the findings of earlier laboratory studies on mosquito activity at LLINs, and reinforce the key role of multiple brief contacts at the net roof as the critical LLIN mode of action

    Application of quality by design tools to upstream processing of platelet precursor cells to enable in vitro manufacture of blood products

    Get PDF
    Annually 4.5 million platelet units are transfused in Europe and the United States. These are obtained solely from allogeneic donations and have a shelf life of 5-7 days. To address the corresponding supply challenge, Moreau et al.1 devised a novel process for producing megakaryocytes (MKs, the platelet precursor cell) in vitro. A transcription-factor driven, forward-programming (FOP) approach converts human pluripotent stem cells into MKs. This strategy has the unique advantage of generating high yields of pure MKs in chemically defined medium which could lead to the production of a consistent, reliable supply of platelets which overcomes the logistical, financial and biosafety challenges for health organisations worldwide. Here we follow a Quality by Design (QbD) approach to enable improvements to the upstream processing of FOPMKs. Firstly, we created a process flow diagram for production of in vitro platelets for transfusion, which segregated processes into individual unit operations for control and optimisation. Next, we developed a Quality Target Product Profile (QTPP) and identified Critical Quality Attributes (CQAs) for each stage. We conducted a range of experiments utilising Design of Experiments (DOE) and mechanistic modelling2 tools to link Critical Process Parameters (CPPs) to CQAs. For adherent culture, we identified a productivity limit related to surface area available for growth and a cell loss phase which was dependent on cell seeding density, RhoK inhibitor usage and seed density. Using suspension cultures of FOPMK. We noted that TPO and Doxycycline concentration were CPPs as these impacted cell net growth rate and phenotype trajectory. Furthermore, we noted that medium exhaustion led to a 30% loss of viable cells over 8 hours. Proof of concept studies also showed that FOPMKs can be cultured in scaled-down suspension systems (ambr-15 and spinner flask culture) whilst retaining CQAs. 1. Moreau, T. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat. Commun. 7, 1–15 (2016). 2. Stacey, A. J., Cheeseman, E. A., Glen, K. E., Moore, R. L. L. & Thomas, R. J. Experimentally integrated dynamic modelling for intuitive optimisation of cell-based processes and manufacture. Biochem. Eng. J. 132, 130–138 (2018)

    Insecticidal roof barriers mounted on untreated bed nets can be as effective against Anopheles gambiae as regular insecticide-treated bed nets

    Get PDF
    Barrier bednets (BBnets), regular bednets with a vertical insecticidal panel to target mosquitoes above the bednet roof, where they are most active, have the potential to improve existing Insecticidal Treated Bednets (ITNs), by reducing the quantity of insecticide required per net, reducing the toxic risks to those using the net, potentially increasing insecticide choice. We evaluated the performance of PermaNet 3.0 (P3) and untreated (Ut) bed nets with and without pyrethroid and piperonyl butoxide roof barriers in killing pyrethroid-resistant and susceptible Anopheles gambiae, simultaneously video-recording mosquito flight tracks. Bioassay results showed that treated roof barriers, particularly the longitudinal P3 barrier (P3L) could be an effective addition to a bed net: P3 + P3L were consistently significantly more effective than the reference P3 bednet while performance of untreated nets could be raised to equal that of the reference P3 following the addition of a P3 barrier. The BBnet’s potential to augment existing bednets and enhance their performance is considered
    • 

    corecore