4 research outputs found

    Venus wind map at cloud top level with the MTR/THEMIS visible spectrometer. I. Instrumental performance and first results

    Full text link
    Solar light gets scattered at cloud top level in Venus' atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line (5890 \AA). Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, 31 m/s per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at 151 +/- 16 m/s.Comment: 17 pages, 12 figure

    Venus wind map at cloud top level with the MTR/THEMIS visible spectrometer, I: Instrumental performance and first results

    No full text
    International audienceSolar light gets scattered at cloud top level in Venus' atmosphere, in the visible range, which corresponds to the altitude of 67 km. We present Doppler velocity measurements performed with the high resolution spectrometer MTR of the Solar telescope THEMIS (Teide Observatory, Canary Island) on the sodium D2 solar line (5890A˚). Observations lasted only 49 min because of cloudy weather. However, we could assess the instrumental velocity sensitivity, 31ms-1 per pixel of 1 arcsec, and give a value of the amplitude of zonal wind at equator at 151±16ms-1

    Detection of g modes in the asymptotic frequency range: evidence for a rapidly rotating core

    No full text
    International audienceWe present the identification of very low frequency g modes, in the asymptotic regime, and two important parameters: the core rotation rate and the asymptotic equidistant period spacing of these g modes. The GOLF instrument on the SOHO space observatory has provided two decades of full disk helioseismic data. The search for g modes in GOLF measurements has been extremely difficult, due to solar and instrumental noise. In the present study, the p modes of the GOLF signal are analyzed differently, searching for possible collective frequency modulations produced by periodic changes in the deep solar structure. Such modulations provide access to only very low frequency g modes, thus allowing statistical methods to take advantage of their asymptotic properties. For oscillatory periods in the range between 9 and nearly 48 hours, almost 100 g modes of spherical harmonic degree 1 and more than 100 g modes of degree 2 are predicted. They are not observed individually, but when combined, they unambiguously provide their asymptotic period equidistance and rotational splittings, in excellent agreement with the requirements of the asymptotic approximations. P0, the g-mode period equidistance parameter, is measured to be 34 min 01 s, with a 1 s uncertainty. The previously unknown g-mode splittings have now been measured from a non synodic reference with a very high accuracy, and they imply a mean weighted rotation of 1277 ± 10 nHz (9-day period) of their kernels, resulting in a rapid rotation frequency of 1644 ± 23 nHz (period of one week) of the solar core itself, which is a factor 3:8 ± 0:1 faster than the rotation of the radiative envelope
    corecore