4,230 research outputs found

    Numerical investigation of boiling

    Get PDF
    In this work, we study different phenomena that occur during nucleate boiling. We numerically investigate boiling using two phase flow direct numerical simulation based on a level set / Ghost Fluid method. This method allows us to follow the interface and to make accurate geometric calculation as for bubble curvature. Nucleate boiling on a plate is not only a thermal issue, but also involves multiphase dynamics issues at different scales and at different stages of bubble growth. As a consequence, we divide the whole problem and investigate separately the different phenomena considering their nature and the scale at which they occur. First we analyse the boiling of a static bubble immersed in an overheated liquid. We perform numerical simulations at different Jakob numbers in the case of strong discontinuity of density through the interface. These simulations permit us to estimate the accuracy of our numerical method dealing with phase change in the context of two phase flow direct numerical simulation. The results show a good agreement between numerical bubble radius evolution and the theoretical evolution found by Scriven(1959). The validation of our code for the Scriven case allows to pursue our study by focusing on the phenomena that take place in the particular case of an interaction with a wall. This interaction is characterised by the angle formed between a solid and a fluid interface, named the contact angle. We implement a method that makes it possible for a droplet, to reach, in the case of a static contact angle, a steady state corresponding to a theoretical equilibrium. Besides this method enables to take into account the contact angle hysteresis model, which considers different angles whether the contact line is advancing or recoiling. We perform simulations of the spreading of a liquid droplet impacting on a plate, and we compare the maximum spreading diameter and the advancing and receding droplet behaviour of our numerical results with the experimental data Son and Lee (2010) have reported

    On the dynamics and breakup of a bubble immersed in a turbulent flow

    Get PDF
    Experimental investigations of the dynamics of a deformable bubble rising in a uniform turbulent flow are reported. The turbulence is characterized by fast PIV. Time-resolved evolutions of bubble translation, rotation and deformation are determined by three-dimensional shape recognition from three perpendicular camera views. The bubble dynamics involves three mechanisms fairly decoupled: (i) average shape is imposed by the mean motion of the bubble relative to liquid; (ii) wake instability generates almost periodic oscillations of velocity and orientation; (iii) turbulence causes random deformations that sometimes lead to breakup. The deformation dynamics is radically different from that observed in the absence of a significant sliding motion due to buoyancy. Large deformations that lead to breakup are not axisymmetric and correspond to elongations in the horizontal direction. The timescale of decay of shape oscillations is of the same order as their natural frequency f2, so that breakup always results from the interaction with a single turbulent eddy. This overdamping causes the statistics of large deformations and the statistics of breakup identical to the statistics of turbulence. The bubble response time f2 however controls the duration of individual breakup events

    Turbulent bubbly flow in pipe under gravity and microgravity conditions

    Get PDF
    Experiments on vertical turbulent flow with millimetric bubbles, under three gravity conditions, upward, downward and microgravity flows (1g, -1g and 0g), have been performed to understand the influence of gravity upon the flow structure and the phase distribution. The mean and fluctuating phase velocities, shear stress, turbulence production, gas fraction and bubble size have been measured or determined. The results for 0g flow obtained during parabolic flights are taken as reference for buoyant 1g and -1g flows. Three buoyancy numbers are introduced to understand and quantify the effects of gravity with respect to friction. We show that the kinematic structure of the liquid is similar to single-phase flow for 0g flow whereas it deviates in 1g and -1g buoyant flows. The present results confirm the existence of a two-layer structure for buoyant flows with a nearly homogeneous core and a wall layer similar to the single-phase inertial layer whose thickness seems to result from a friction–gravity balance. The distributions of phase velocity, shear stress and turbulence are discussed in the light of various existing physical models. This leads to a dimensionless correlation that quantifies the wall shear stress increase due to buoyancy. The turbulent dispersion, the lift and the nonlinear effects of added mass are taken into account in a simplified model for the phase distribution. Its analytical solution gives a qualitative description of the gas fraction distribution in the wall layer

    Experimental study of bubble-drag interaction in a Taylor-Couette flow

    Get PDF
    This study is an experimental investigation of the interactions between the bubbles, the coherent motion and the viscous drag in a Taylor Couette flow, for the outer cylinder at rest. The cylinder radius ratio is 0.9. Bubbles are injected through a needle at the bottom of the apparatus inside the gap. Different bubble sizes are investigated (ratio between the bubble size and the gap width 0.05 and 0.12) for very small void fraction (≤0.012). Different flow regimes are studied corresponding to Reynolds number Re based on the gap width and the velocity of the inner cylinder ranging from 400 to 20000. For these Re values, Taylor vortices are persistent leading to an axial periodicity of the flow. PIV measurements of the liquid flow features, bubble tracking in a meridian plane and viscous torque of the inner cylinder measurements are performed. This study provides a first evidence of the link between the bubble localisation, the Taylor vortices and viscous torque modifications. Bubbles are attracted towards the inner cylinder, due to the rotation of the cylinder. For small buoyancy effect, bubbles are trapped and induce a decrease in the outflow intensity, thus leading to an increase of the viscous torque. When buoyancy induced bubble motion, by comparison to the coherent motion of the liquid is increased, a decrease in the viscous torque is suspected

    Pool boiling in microgravity with a single specie system

    Get PDF
    Pool boiling experiments in microgravity on the small copper plate of 1cm² have been performed in the SOURCE 2 experiment aboard the sounding Rocket Maser 12 launched on February 13th, 2012. The SOURCE 2 experiment is a small-scale tank devoted to the study of heat and mass transfers with a liquid refrigerant HFE7000 pressurised with its vapour. SOURCE 2 (SOUnding Rocket Compere Experiment) was developed in the frame of a French German space programme COMPERE (on the behaviour of propellant in launcher tanks) managed by CNES and DLR and a MAP ESA Project "Multiscale Analysis of boiling". During the 6 minutes of the flight different physical phenomena were studied by our partners: ZARM, University of Bremen, Air Liquide and Astrium. The boiling experiment was performed in a 6 cm diameter and 28 cm long cylindrical tank partly filled with a refrigerant Novec HFE7000 with a low boiling point (34°C at 1 bar) and pressurized by its own vapour. The heating element used for the boiling investigation consisted of an electrical resistance heated by Joule effect in contact with a flux-meter and a copper plate with a thickness of 40 micrometres. The flux-meter was equipped with two thermocouples. It was then possible to measure at the same time the heat flux transmitted to the liquid and the wall temperature. The liquid temperature above the heater was measured by 5 micro thermocouples located in the vicinity of the wall. Images of the boiling phenomenon were recorded by a video camera through the transparent cylindrical wall of the tank. SOURCE 2 is in the continuity of the SOURCE 1 experiment, which flew successfully on Maser 11 on 15 May 2008 (Kannengieser et al. 2010). The experiment scenario was similar to the present case. However, in SOURCE 1, liquid HFE-7000 was pressurized by gaseous nitrogen. The lateral glass wall was preheated and a strong evaporation took place at the free surface in the vicinity of the wall. Due to the presence of nitrogen a strong Marangoni convection occurred at the free surface enhancing nitrogen dissolution in the liquid phase. Then during the boiling experiment, the bubble growth was due to liquid vaporization and nitrogen desorption. Marangoni convection also occurred at the bubble interface leading to a capillary force pushing the bubble to the heated wall. In the SOURCE 2 experiment, a single specie configuration is studied (liquid/vapour HFE7000). This changes the thermo-hydraulic behaviour of the system. Since no Marangoni convection kept the bubble in contact with the heated wall, a primary bubble detached and grew by feeding itself with the smaller bubbles formed over the heated surface. The change in the bubble size is only due to vaporization. Then the measurements of the heat flux transferred to the fluid by the heater could be directly correlated to the amount of vapour production (balance of evaporation and re-condensation) that could be evaluated from visualization and image processing. When the rocket was launched, the test cell was empty. The top part and the lateral glass wall of the test cell were preheated before launch. Just before the microgravity period, the tank filling began, liquid HFE7000 at 25 °C was injected in the tank by the pump and pressurized by hot vapour HFE7000. At the beginning of the boiling experiment, the tank pressure was reduced to 1.5 bars and the heating of the heater element was switch on and boiling started. During this period, it was planed to study boiling with high sub-cooled liquid then to decrease the pressure to 1 bar to study saturated boiling. However while pressurization with hot vapour HFE7000, strong condensation occurred that rapidly warmed up HFE7000 up to 40°C during boiling study. As a consequence, at 1.5 bars, the sub-cooling was limited to 5 degrees. Then the tank pressured was reduced to 1.3 bars to investigated boiling in saturated conditions. On the other hand, before launch, tests were performed on ground and boiling curves were plotted. In this paper we will attend to compare the results obtained in micro-gravity and in 1G

    Flow boiling in straight heated tubes under microgravity conditions

    Get PDF
    Boiling two-phase flow can transfer large heat fluxes with small driving temperature differences, which is of great interest for the design of high-performance thermal management systems applied to space platforms and on-board electronics cooling in particular. However, such systems are designed using ground-based empirical correlations, which may not be reliable under microgravity conditions. Therefore, several two-phase flow (gas-liquid flow and boiling flow) experiments have been conducted in the past forty years and enabled to gather data about flow patterns, pressure drops, and heat transfers including critical heat fluxes and void fractions in thermohydraulic systems. Previous state of the art data can be found in the papers of Colin et al. (1996), Ohta (2003), and Celata and Zummo (2009). However, there is still a lack of reliable data on heat transfer in flow boiling in microgravity. Therefore, the purpose of our study is to clarify gravity effects on heat transfer characteristics and provide a fundamental description of boiling heat transfer for space applications. Hence, a two-phase flow loop for the study of flow boiling has been built at the IMFT in order to perform experiments in vertical flow in normal gravity and under microgravity conditions during parabolic flights in the aircraft. The test section is a 1mm thick sapphire tube of 6mm internal diameter with an ITO coating on its outer surface. The coating is heated by Joule effect and its temperature is measured in four locations by Pt100 sensors. High-speed movies of the flow are taken with a PCO 1200HS camera. The pressure drop is measured along the test section with two differential pressure transducers Valydine P305D. The mean void fraction upstream and downstream the test section is measured by capacitance probes developed and carefully calibrated at the IMFT. The refrigerant HFE-7000, which was chosen for safety reasons in the aircraft and because of its low saturation temperature at atmospheric pressure (34°C), circulates with mass fluxes G up to 1000 kg/s/m². A wide range of flow boiling regimes are studied, from subcooled flow boiling to saturated flow boiling with vapour mass qualities up to 0.7. The wall heat flux density ranges from 0 to 45 000 W/m². In subcooled boiling, bubbly flow is mainly observed. For saturated conditions the flow patterns are slug and annular flows depending on the quality value (Figure 1). Preliminary data were collected during a first flight campaign and on ground. The wall local heat transfer coefficients are deduced from the wall heat flux density and the local wall temperature measurements. Heat losses are characterized. Joint measurements of pressure drop and mean void fraction along the test section allow to access to the wall shear stress. Preliminary results suggest that gravity has no noticeable effect on heat transfers for mass fluxes G superior to 400 kg/s/m², which implies that lower mass fluxes should be investigated. Results obtained under normal and microgravity conditions are compared to existing models in order to obtain reliable and precise closure laws for boiling heat transfer in microgravity
    corecore