200 research outputs found

    Fast Analysis of Taurine in Energetic Drinks by Electrospray Ionization Mass Spectrometry

    Get PDF
    Santos, LS (Santos, Leonardo S.). Univ Talca, Inst Quim Recursos Nat, Lab Asymmetr Synth, Talca, ChileDirect infusion electrospray ionization tandem mass spectrometry in the negative ion mode with single reaction monitoring is show to allow high selectivity and sensitivity in the quantification of taurine in energetic drinks. The method is also simple and rapid (less than 2 min run time), with high recovery and repeatability. Commercially available energetic drinks were found to contain taurine in concentrations quite different (lower or higher) from the declared amounts

    Vitamin A in diets for Nile tilapia.

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Dietary vitamin supplementation decrease stress caused by high stocking density, and boosts immunological system of farmed fish. A studied was carried out to determine vitamin A requirements of Nile tilapia (Oreochromis niloticus) in an all male group (13.8 ± 1.2 g) and a mixed sex population (9.8 ± 2.3 g). Fish stocked in 100-L plastic aquaria (26.0 ± 1.0ºC) were fed to near satiety, twice a day, seven days a week, during 75 days with vitamin A-free, semi-purified diets supplemented with 0; 600; 1,200; 1,800; 2,400; 3,000; 3,600; 4,200; 4,800 and 5,400 International Units (IU) of retinyl palmitate (30% vitamin A) per kg of diet in a completely randomized experimental design, factorial arrangement 2c10 (n = 4). Deficiency signs of vitamin A were observed in fish fed 0 to 1.200 IU vitamin A kg-1 diet; moderate signs were observed in fish fed diets with 1.800 to 3.600 IU vitamin A kg-1 diet; no interactions group*level (p 0.05). A group effect was observed regarding all performance variables (p 0,05). Foi observado efeito de grupo no desempenho dos peixes (p < 0,0001). Foi detectado o retinol hepático através de HPLC somente no grupo alimentado com 5.400 UI de retinol kg-1 de dieta, caracterizando assim que o mesmo foi utilizado e armazenado. A quantidade de 5.400 IU de retinol kg-1 de dieta é a mínima recomendada para tilápia do Nilo.666751756Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP_Brasi

    Mass Spectrometry and Metabolomics—New Approaches for Helminth Biochemical Studies

    Get PDF
    Metabolomics, the study of the endogenously synthesized small molecules repertoire (nonproteinaceous), is of great relevance for establishing a wide view of cell physiology at specific moments, linking metabolic profiles to phenotypes and genotypes. To better understand biological systems, such as helminths life cycle, helminthic infection, and host-parasite interaction, metabolomics studies are crucial. For that, mass spectrometry-based metabolomics is the most popular strategy. Nontargeted metabolomics allows researchers to profile entire metabolomes present in cells, tissues, biofluids, or even samples as complex as stools. Through different mass spectrometric techniques, it is possible to unveil chemical markers for helminths, such as Schistosoma mansoni (a trematode) and Ascaris lumbricoides (a nematode), in addition to study mechanisms of action for different drugs, which targets parasites. Therefore, mass spectrometry allows designing biochemical pathways that may clarify the processes of parasite life cycle, helminthic infection, and host-parasite interaction, providing targets to further interference for parasite control or even infection treatment

    Resolvin rvd2 reduces hypothalamic inflammation and rescues mice from diet-induced obesity

    Get PDF
    Diet-induced hypothalamic inflammation is an important mechanism leading to dysfunction of neurons involved in controlling body mass. Studies have shown that polyunsaturated fats can reduce hypothalamic inflammation. Here, we evaluated the presence and function of RvD2, a resolvin produced from docosahexaenoic acid, in the hypothalamus of mice. Methods: Male Swiss mice were fed either chow or a high-fat diet. RvD2 receptor and synthetic enzymes were evaluated by real-time PCR and immunofluorescence. RvD2 was determined by mass spectrometry. Dietary and pharmacological approaches were used to modulate the RvD2 system in the hypothalamus, and metabolic phenotype consequences were determined. Results: All enzymes involved in the synthesis of RvD2 were detected in the hypothalamus and were modulated in response to the consumption of dietary saturated fats, leading to a reduction of hypothalamic RvD2. GPR18, the receptor for RvD2, which was detected in POMC and NPY neurons, was also modulated by dietary fats. The substitution of saturated by polyunsaturated fats in the diet resulted in increased hypothalamic RvD2, which was accompanied by reduced body mass and improved glucose tolerance. The intracerebroventricular treatment with docosahexaenoic acid resulted in increased expression of the RvD2 synthetic enzymes, increased expression of anti-inflammatory cytokines and improved metabolic phenotype. Finally, intracerebroventricular treatment with RvD2 resulted in reduced adiposity, improved glucose tolerance and increased hypothalamic expression of anti-inflammatory cytokines. Conclusions: Thus, RvD2 is produced in the hypothalamus, and its receptor and synthetic enzymes are modulated by dietary fats. The improved metabolic outcomes of RvD2 make this substance an attractive approach to treat obesity14511

    Catalase vs Peroxidase Activity of a Manganese(II) Compound: Identification of a Mn(III)-(μ-O)2-Mn(IV) Reaction Intermediate by Electrospray Ionization Mass Spectrometry and Electron Paramagnetic Resonance Spectroscopy

    Get PDF
    Herein, we report reactivity studies of the mononuclear water-soluble complex [Mn(II)(HPClNOL)(η1-NO3)(η2-NO3)] 1, where HPClNOL ) 1-(bis-pyridin-2-ylmethyl-amino)-3-chloropropan-2-ol, toward peroxides (H2O2 and tertbutylhydroperoxide). Both the catalase (in aqueous solution) and peroxidase (in CH3CN) activities of 1 were evaluated using a range of techniques including electronic absorption spectroscopy, volumetry (kinetic studies), pH monitoring during H2O2 disproportionation, electron paramagnetic resonance (EPR), electrospray ionization mass spectrometry in the positive ion mode [ESI(+)-MS], and gas chromatography (GC). Electrochemical studies showed that 1 can be oxidized to Mn(III) and Mn(IV). The catalase-like activity of 1 was evaluated with and without pH control. The results show that the pH decreases when the reaction is performed in unbuffered media. Furthermore, the activity of 1 is greater in buffered than in unbuffered media, demonstrating that pH influences the activity of 1 toward H2O2. For the reaction of 1 with H2O2, EPR and ESI(+)-MS have led to the identification of the intermediate [Mn(III)Mn(IV)(μ- O)2(PClNOL)2]+. The peroxidase activity of 1 was also evaluated by monitoring cyclohexane oxidation, using H2O2 or tert-butylhydroperoxide as the terminal oxidants. Low yields (<7%) were obtained for H2O2, probably because it competes with 1 for the catalase-like activity. In contrast, using tert-butylhydroperoxide, up to 29% of cyclohexane conversion was obtained. A mechanistic model for the catalase activity of 1 that incorporates the observed lag phase in O2 production, the pH variation, and the formation of a Mn(III)-(μ-O)2-Mn(IV) intermediate is proposed

    Coenzyme Q10 or Creatine Counteract Pravastatin-Induced Liver Redox Changes in Hypercholesterolemic Mice

    Get PDF
    Statins are the preferred therapy to treat hypercholesterolemia. Their main action consists of inhibiting the cholesterol biosynthesis pathway. Previous studies report mitochondrial oxidative stress and membrane permeability transition (MPT) of several experimental models submitted to diverse statins treatments. The aim of the present study was to investigate whether chronic treatment with the hydrophilic pravastatin induces hepatotoxicity in LDL receptor knockout mice (LDLr-/-), a model for human familial hypercholesterolemia. We evaluated respiration and reactive oxygen production rates, cyclosporine-A sensitive mitochondrial calcium release, antioxidant enzyme activities in liver mitochondria or homogenates obtained from LDLr-/- mice treated with pravastatin for 3 months. We observed that pravastatin induced higher H2O2 production rate (40%), decreased activity of aconitase (28%), a superoxide-sensitive Krebs cycle enzyme, and increased susceptibility to Ca2+-induced MPT (32%) in liver mitochondria. Among several antioxidant enzymes, only glucose-6-phosphate dehydrogenase (G6PD) activity was increased (44%) in the liver of treated mice. Reduced glutathione content and reduced to oxidized glutathione ratio were increased in livers of pravastatin treated mice (1.5- and 2-fold, respectively). The presence of oxidized lipid species were detected in pravastatin group but protein oxidation markers (carbonyl and SH- groups) were not altered. Diet supplementation with the antioxidants CoQ10 or creatine fully reversed all pravastatin effects (reduced H2O2 generation, susceptibility to MPT and normalized aconitase and G6PD activity). Taken together, these results suggest that 1- pravastatin induces liver mitochondrial redox imbalance that may explain the hepatic side effects reported in a small number of patients, and 2- the co-treatment with safe antioxidants neutralize these side effects
    corecore