418 research outputs found

    Virtual Shaping on NACA 0015 by Means of a High Momentum Coefficient Synthetic Jet

    Get PDF
    Results concerning flow control on a NACA 0015 airfoil using high power synthetic jets are presented for low incidences and for Reynolds numbers ranging from 132000 to 425000. The forcing was operated through a spanwise slit positioned near the leading edge at x/c=1.25% or at x/c=10% on the upper surface. Static pressure distribution measurements around the airfoil, wake surveys and smoke flow visualizations were performed. Pressure distributions were significantly modified around the injection location, showing an area of intense suction which increased the lift and strongly affected the drag. Flow visualizations highlighted that the intense suction was due to a virtual shaping effect caused by the formation of a recirculation bubble capable of displacing the streamlines. Low momentum deficits in the wake velocity distributions and, in certain conditions, jet-like flow was observed for the forced cases. Finally, a scaling law relating the bubble size to the forcing intensity is propose

    Hairs on the cosmological horizon

    Full text link
    We investigate the possibility of having hairs on the cosmological horizon. The cosmological horizon shares similar properties of black hole horizons in the aspect of having hairs on the horizons. For those theories admitting haired black hole solutions, the nontrivial matter fields may reach and extend beyond the cosmological horizon. For Q-stars and boson stars, the matter fields cannot reach the cosmological horizon. The no short hair conjecture keeps valid, despite the asymptotic behavior (de Sitter or anti-de Sitter) of black hole solutions. We prove the no scalar hair theorem for anti-de Sitter black holes. Using the Bekenstein's identity method, we also prove the no scalar hair theorem for the de Sitter space and de Sitter black holes if the scalar potential is convex.Comment: Revtex, no figures, 16 page

    Modelling of friction stir welding of DH36 steel

    Get PDF
    A 3-D computational fluid dynamics (CFD) model was developed to simulate the friction stir welding of 6-mm plates of DH36 steel in an Eulerian steady-state framework. The viscosity of steel plate was represented as a non- Newtonian fluid using a flow stress function. The PCBN-WRe hybrid tool was modelled in a fully sticking condition with the cooling system effectively represented as a negative heat flux. The model predicted the temperature distribution in the stirred zone (SZ) for six welding speeds including low, intermediate and high welding speeds. The results showed higher asymmetry in temperature for high welding speeds. Thermocouple data for the high welding speed sample showed good agreement with the CFD model result. The CFD model results were also validated and compared against previous work carried out on the same steel grade. The CFD model also predicted defects such as wormholes and voids which occurred mainly on the advancing side and are originated due to the local pressure distribution between the advancing and retreating sides. These defects were found to be mainly coming from the lack in material flow which resulted from a stagnant zone formation especially at high tra- verse speeds. Shear stress on the tool surface was found to in- crease with increasing tool traverse speed. To produce a “sound” weld, the model showed that the welding speed should remain between 100 and 350 mm/min. Moreover, to prevent local melt- ing, the maximum tool’s rotational speed should not exceed 550 RPM

    Extensive marine-terminating ice sheets in Europe from 2.5 million years ago

    Get PDF
    Geometries of Early Pleistocene [2.58 to 0.78 million years (Ma) ago] ice sheets in northwest Europe are poorly constrained but are required to improve our understanding of past ocean-atmosphere-cryosphere coupling. Ice sheets are believed to have changed in their response to orbital forcing, becoming, from about 1.2 Ma ago, volumetrically larger and longer-lived. We present a multiproxy data set for the North Sea, extending to over a kilometer below the present-day seafloor, which demonstrates spatially extensive glaciation of the basin from the earliest Pleistocene. Ice sheets repeatedly entered the North Sea, south of 60°N, in water depths of up to ~250 m from 2.53 Ma ago and subsequently grounded in the center of the basin, in deeper water, from 1.87 Ma ago. Despite lower global ice volumes, these ice sheets were near comparable in spatial extent to those of the Middle and Late Pleistocene but possibly thinner and moving over slippery (low basal resistance) beds
    • 

    corecore