9 research outputs found

    Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer’s disease

    Get PDF
    Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer’s disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD

    Collateral sprouting of peripheral sensory neurons exhibits a unique transcriptomic profile

    No full text
    Peripheral nerve injuries result in motor and sensory dysfunction which can be recovered by compensatory or regenerative processes. In situations where axonal regeneration of injured neurons is hampered, compensation by collateral sprouting from uninjured neurons contributes to target reinnervation and functional recovery. Interestingly, this process of collateral sprouting from uninjured neurons has been associated with the activation of growth-associated programs triggered by Wallerian degeneration. Nevertheless, themolecular alterations at the transcriptomic level associated with these compensatory growthmechanisms remain to be fully elucidated. We generated a surgical model of partial sciatic nerve injury in mice to mechanistically study degenerationinduced collateral sprouting from spared fibers in the peripheral nervous system. Using next-generation sequencing and Ingenuity Pathway Analysis, we described the sprouting-associated transcriptome of uninjured sensory neurons and compare it with the activated by regenerating neurons. In vitro approacheswere used to functionally assess sprouting gene candidates in the mechanisms of axonal growth. Using a novel animal model, we provide the first description of the sprouting transcriptome observed in uninjured sensory neurons after nerve injury. This collateral sprouting-associated transcriptome differs from that seen in regenerating neurons, suggesting a molecular program distinct from axonal growth.We further demonstrate that genetic upregulation of novel sproutingassociated genes activates a specific growth program in vitro, leading to increased neuronal branching. These results contribute to our understanding of the molecular mechanisms associated with collateral sprouting in vivo. The data provided here will therefore be instrumental in developing therapeutic strategies aimed at promoting functional recovery after injury to the nervous system.Geroscience Center for Brain Health and Metabolism FONDAP-15150012 Takeda Pharmaceutical Company Ltd P09-015-F Formation of Advance Human Capital Program of CONICYT 21110017 ISPG from the BBSRC FONDECYT-1150766 FONDECYT119051

    Axonal degeneration is mediated by necroptosis activation Necroptosis mediates axonal degeneration

    No full text
    Axonal degeneration contributes to functional impairment in several disorders of the nervous system, constituting an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but the identification of an integrative signaling pathway activating this self-destructive process has remained elusive. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell death mechanism, implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral and central nervous system of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock down of RIPK3, a second key regulator of necroptosis, and the downstream effector, MLKL RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was evidenced by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.SIGNIFICANCE STATEMENTWe show that axonal degeneration triggered by diverse stimuli is mediated by the activation of the necroptotic programmed cell death program by a cell-autonomous mechanism. We believe that this work represents a critical advance for the field since it identifies a defined degenerative pathway involved in axonal degeneration in both PNS and CNS, a process that has been proposed as an early event in several neurodegenerative conditions and a major contributor of neuronal death. The identification of necroptosis as a key mechanism for axonal degeneration, is an important step to develop novel therapeutic strategies for nervous system disorders, particularly those related to chemotherapy-induced peripheral neuropathies or CNS diseases in which axonal degeneration is a common factor

    The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease.

    No full text
    Parkinson's disease (PD) is the second most common neurodegenerative condition, characterized by motor impairment due to the progressive degeneration of dopaminergic neurons in the substantia nigra and depletion of dopamine release in the striatum. Accumulating evidence suggest that degeneration of axons is an early event in the disease, involving destruction programs that are independent of the survival of the cell soma. Necroptosis, a programmed cell death process, is emerging as a mediator of neuronal loss in models of neurodegenerative diseases. Here, we demonstrate activation of necroptosis in postmortem brain tissue from PD patients and in a toxin-based mouse model of the disease. Inhibition of key components of the necroptotic pathway resulted in a significant delay of 6-hydroxydopamine-dependent axonal degeneration of dopaminergic and cortical neurons in vitro. Genetic ablation of necroptosis mediators MLKL and RIPK3, as well as pharmacological inhibition of RIPK1 in preclinical models of PD, decreased dopaminergic neuron degeneration, improving motor performance. Together, these findings suggest that axonal degeneration in PD is mediated by the necroptosis machinery, a process here referred to as necroaxoptosis, a druggable pathway to target dopaminergic neuronal loss

    Image_1_Long-term social isolation stress exacerbates sex-specific neurodegeneration markers in a natural model of Alzheimer’s disease.pdf

    No full text
    Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer’s disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-β (Aβ) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aβ increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aβ proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.</p
    corecore