64 research outputs found

    Proatherosklerotische Wechselwirkung von oxidativem Stress, Low-Density-Lipoprotein, Angiotensin II und Endothelin-1 in humanen Endothelzellen

    Get PDF
    Eine der häufigsten kardiovaskulären Erkrankungen ist die Atherosklerose. Bei der Entstehung einer Atherosklerose spielt eine Hyperlipoproteinämie eine entscheidende Rolle. Ein weiterer Faktor für die Entstehung kardiovaskulärer Erkrankungen ist ein hoher Blutdruck. In dieser Arbeit wurde eine mögliche Interaktion zwischen Lipoproteinen und den blutdruckregulierenden Endothelin- und Renin-Angiotensin-Systemen untersucht. Weiterführende Analysen erfolgten an Rezeptoren für die Aufnahme von nLDL und oxLDL. Abschließend wurden Signalwege untersucht, die durch nLDL und oxLDL aktiviert werden. Tierexperimentielle Untersuchungen in Aorten und Herzen fettreich gefütterter Wildtyp- Mäuse unterstützen die Zellkultur-Ergebnisse einer Induzierung des Endothelin-Systems durch erhöhte Lipoproteine. Zusammenfassend zeigt diese Arbeit neue Mechanismen der Interaktion von Lipoproteinen und blutdruckregulierenden Systemen in Endothelzellen. Die Rezeptoren scheinen dabei eine Schlüsselrolle zu spielen. Dies spricht für eine Potenzierung von Hyperlipoproteinämie und Hypertonie bei der Entstehung von Herz-Kreislauf-Erkrankungen

    IL-17 in Peritoneal Dialysis-Associated Inflammation and Angiogenesis: Conclusions and Perspectives

    Get PDF
    Long-term peritoneal dialysis (PD) is associated with peritoneal membrane remodeling. This includes changes in peritoneal vasculature, which may ultimately lead to inadequate solute and water removal and treatment failure. The potential cause of such alterations is chronic inflammation induced by repeated episodes of infectious peritonitis and/or exposure to bioincompatible PD fluids. While these factors may jeopardize the peritoneal membrane integrity, it is not clear why adverse peritoneal remodeling develops only in some PD patients. Increasing evidence points to the differences that occur between patients in response to the same invading microorganism and/or the differences in the course of inflammatory reaction triggered by different species. Such differences may be related to the involvement of different inflammatory mediators. Here, we discuss the potential role of IL-17 in these processes with emphasis on its impact on peritoneal mesothelial cells and peritoneal vascularity

    Autoantibodies from Patients with Scleroderma Renal Crisis Promote PAR-1 Receptor Activation and IL-6 Production in Endothelial Cells

    Get PDF
    Background. Scleroderma renal crisis (SRC) is a life-threatening complication of systemic sclerosis (SSc). Autoantibodies (Abs) against endothelial cell antigens have been implicated in SSc and SRC. However, their detailed roles remain poorly defined. Pro-inflammatory cytokine interleukin-6 (IL-6) has been found to be increased in SSc, but its role in SRC is unclear. Here, we aimed to determine how the autoantibodies from patients with SSc and SRC affect IL-6 secretion by micro-vascular endothelial cells (HMECs). Methods. Serum IgG fractions were isolated from either SSc patients with SRC (n = 4) or healthy individuals (n = 4) and then each experiment with HMECs was performed with SSc-IgG from a separate patient or separate healthy control. IL-6 expression and release by HMECs was assessed by quantitative reverse transcription and quantitative PCR (RT-qPCR) and immunoassays, respectively. The mechanisms underlying the production of IL-6 were analyzed by transient HMEC transfections with IL-6 promoter constructs, electrophoretic mobility shift assays, Western blots and flow cytometry. Results. Exposure of HMECs to IgG from SSc patients, but not from healthy controls, resulted in a time- and dose-dependent increase in IL-6 secretion, which was associated with increased AKT, p70S6K, and ERK1/2 signalling, as well as increased c-FOS/AP-1 transcriptional activity. All these effects could be reduced by the blockade of the endothelial PAR-1 receptor and/or c-FOS/AP-1silencing. Conclusions. Autoantibodies against PAR-1 found in patients with SSc and SRC induce IL-6 production by endothelial cells through signalling pathways controlled by the AP-1 transcription factor. These observations offer a greater understanding of adverse endothelial cell responses to autoantibodies present in patients with SRC

    17ß-Estradiol Regulates mTORC2 Sensitivity to Rapamycin in Adaptive Cardiac Remodeling

    Get PDF
    Adaptive cardiac remodeling is characterized by enhanced signaling of mTORC2 downstream kinase Akt. In females, 17ß-estradiol (E2), as well as Akt contribute essentially to sex-related premenopausal cardioprotection. Pharmacologic mTOR targeting with rapamycin is increasingly used for various clinical indications, yet burdened with clinical heterogeneity in therapy responses. The drug inhibits mTORC1 and less-so mTORC2. In male rodents, rapamycin decreases maladaptive cardiac hypertrophy whereas it leads to detrimental dilative cardiomyopathy in females. We hypothesized that mTOR inhibition could interfere with 17β-estradiol (E2)-mediated sexual dimorphism and adaptive cell growth and tested responses in murine female hearts and cultured female cardiomyocytes. Under physiological in vivo conditions, rapamycin compromised mTORC2 function only in female, but not in male murine hearts. In cultured female cardiomyocytes, rapamycin impaired simultaneously IGF-1 induced activation of both mTOR signaling branches, mTORC1 and mTORC2 only in presence of E2. Use of specific estrogen receptor (ER)α- and ERβ-agonists indicated involvement of both estrogen receptors (ER) in rapamycin effects on mTORC1 and mTORC2. Classical feedback mechanisms common in tumour cells with upregulation of PI3K signaling were not involved. E2 effect on Akt-pS473 downregulation by rapamycin was independent of ERK as shown by sequential mTOR and MEK-inhibition. Furthermore, regulatory mTORC2 complex defining component rictor phosphorylation at Ser1235, known to interfere with Akt-substrate binding to mTORC2, was not altered. Functionally, rapamycin significantly reduced trophic effect of E2 on cell size. In addition, cardiomyocytes with reduced Akt-pS473 under rapamycin treatment displayed decreased SERCA2A mRNA and protein expression suggesting negative functional consequences on cardiomyocyte contractility. Rictor silencing confirmed regulation of SERCA2A expression by mTORC2 in E2-cultured female cardiomyocytes. These data highlight a novel modulatory function of E2 on rapamycin effect on mTORC2 in female cardiomyocytes and regulation of SERCA2A expression by mTORC2. Conceivably, rapamycin abrogates the premenopausal “female advantage”

    Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties

    Get PDF
    Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics

    Renal Ischemia/Reperfusion Injury in Soluble Epoxide Hydrolase-Deficient Mice

    Get PDF
    Aim 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs ameliorate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and thereby protect against I/R-induced acute kidney injury (AKI). Methods Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids were analyzed by liquid chromatography tandem mass spectrometry. Results Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stronger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly increased in sEH-KO compared to WT mice. In line with this finding, renal expression of Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arterioles of sEH-KO compared with WT mice. Conclusion These results indicate that the potential beneficial effects of reducing EET degradation were obliterated by a thus far unknown mechanism leading to kidney-specific up- regulation of 20-HETE formation in sEH-KO-mice

    Molecular Effects of Auto-Antibodies on Angiotensin II Type 1 Receptor Signaling and Cell Proliferation

    Get PDF
    The angiotensin II (Ang II) type 1 receptor (AT1R) is involved in the regulation of blood pressure (through vasoconstriction) and water and ion homeostasis (mediated by interaction with the endogenous agonist). AT1R can also be activated by auto-antibodies (AT1R-Abs), which are associated with manifold diseases, such as obliterative vasculopathy, preeclampsia and systemic sclerosis. Knowledge of the molecular mechanisms related to AT1R-Abs binding and associated signaling cascade (dys-)regulation remains fragmentary. The goal of this study was, therefore, to investigate details of the effects of AT1R-Abs on G-protein signaling and subsequent cell proliferation, as well as the putative contribution of the three extracellular receptor loops (ELs) to Abs-AT1R signaling. AT1R-Abs induced nuclear factor of activated T-cells (NFAT) signaling, which reflects Gq/11 and Gi activation. The impact on cell proliferation was tested in different cell systems, as well as activation-triggered receptor internalization. Blockwise alanine substitutions were designed to potentially investigate the role of ELs in AT1R-Abs-mediated effects. First, we demonstrate that Ang II-mediated internalization of AT1R is impeded by binding of AT1R-Abs. Secondly, exclusive AT1RAbs- induced Gq/11 activation is most significant for NFAT stimulation and mediates cell proliferation. Interestingly, our studies also reveal that ligand-independent, baseline AT1R activation of Gi signaling has, in turn, a negative effect on cell proliferation. Indeed, inhibition of Gi basal activity potentiates proliferation triggered by AT1R-Abs. Finally, although AT1R containing EL1 and EL3 blockwise alanine mutations were not expressed on the human embryonic kidney293T (HEK293T) cell surface, we at least confirmed that parts of EL2 are involved in interactions between AT1R and Abs. This current study thus provides extended insights into the molecular action of AT1R-Abs and associated mechanisms of interrelated pathogenesis

    Angiogenic Role of Mesothelium-Derived Chemokine CXCL1 During Unfavorable Peritoneal Tissue Remodeling in Patients Receiving Peritoneal Dialysis as Renal Replacement Therapy

    Get PDF
    Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy

    Expanded Hemodialysis Therapy Ameliorates Uremia-Induced Systemic Microinflammation and Endothelial Dysfunction by Modulating VEGF, TNF-α and AP-1 Signaling

    Get PDF
    Systemic chronic microinflammation and altered cytokine signaling, with adjunct cardiovascular disease (CVD), endothelial maladaptation and dysfunction is common in dialysis patients suffering from end-stage renal disease and associated with increased morbidity and mortality. New hemodialysis filters might offer improvements. We here studied the impact of novel improved molecular cut-off hemodialysis filters on systemic microinflammation, uremia and endothelial dysfunction. Human endothelial cells (ECs) were incubated with uremic serum obtained from patients treated with two different hemodialysis regimens in the Permeability Enhancement to Reduce Chronic Inflammation (PERCI-II) crossover clinical trial, comparing High-Flux (HF) and Medium Cut-Off (MCO) membranes, and then assessed for their vascular endothelial growth factor (VEGF) production and angiogenesis. Compared to HF membranes, dialysis with MCO membranes lead to a reduction in proinflammatory mediators and reduced endothelial VEGF production and angiogenesis. Cytokine multiplex screening identified tumor necrosis factor (TNF) superfamily members as promising targets. The influence of TNF-alpha and its soluble receptors (sTNF-R1 and sTNF-R2) on endothelial VEGF promoter activation, protein release, and the involved signaling pathways was analyzed, revealing that this detrimental signaling was indeed induced by TNF-alpha and mediated by AP-1/c-FOS signaling. In conclusion, uremic toxins, in particular TNF-signaling, promote endothelial maladaptation, VEGF expression and aberrant angiogenesis, which can be positively modulated by dialysis with novel MCO membranes
    corecore