1,783 research outputs found
Deregulated expression of aurora kinases is not a prognostic biomarker in papillary thyroid cancer patients.
Abstract
A number of reports indicated that Aurora-A or Aurora-B overexpression represented a negative prognostic factor in several human malignancies. In thyroid cancer tissues a deregulated expression of Aurora kinases has been also demonstrated, butno information regarding its possible prognostic role in differentiated thyroid cancer is available. Here, weevaluated Aurora-A and Aurora-B mRNA expression and its prognostic relevance in a series of 87 papillary thyroid cancers (PTC), with a median follow-up of 63 months. The analysis of Aurora-A and Aurora-B mRNA levels in PTC tissues, compared to normal matched tissues, revealed that their expression was either up-or down-regulatedin the majority of cancer tissues. In particular, Aurora-A and Aurora-B mRNA levels were altered, respectively, in 55 (63.2%) and 79 (90.8%) out of the 87 PTC analyzed. A significant positive correlation between Aurora-A and Aurora-B mRNAswas observed (p=0.001). The expression of both Aurora genes was not affected by the BRAF(V600E) mutation. Univariate, multivariate and Kaplan-Mayer analyses documented the lack of association between Aurora-A or Aurora-B expression and clinicopathological parameterssuch as gender, age, tumor size, histology, TNM stage, lymph node metastasis and BRAF status as well asdisease recurrences or disease-free interval. Only Aurora-B mRNA was significantly higher in T(3-4) tissues, with respect to T(1-2) PTC tissues. The data reported here demonstrate that the expression of Aurora kinases is deregulated in the majority of PTC tissues, likely contributing to PTC progression. However, differently from other human solid cancers, detection of Aurora-A or Aurora-B mRNAs is not a prognostic biomarker inPTC patients
Bed radar reflectivity across the north margin of Whillans Ice Stream, West Antarctica, and implications for margin processes
This is the published version, also available here: http://dx.doi.org/10.3189/172756506781828890.Surface-based ice-penetrating radar profiles were made across the active north margin (the Snake) of the upper part of Whillans Ice Stream (formerly Ice Stream B, branch B2), West Antarctica, at three locations. Low frequency (about 2 MHz) and the ground deployment of the radar allowed penetration through the near-surface zone of fracturing to detect internal layering and bed reflection characteristics on continuous profiles spanning from the slow-moving ice of Engelhardt Ridge well into the chaotic zone of the shear margin. Internal layers were tracked beneath the chaotic zone, where they are warped but remain continuous. The energy returned from internal layers showed no systematic changes associated with the transition from the undisturbed surface of the slow-moving ice into the fractured surface of the shear margin, thus indicating little effect from the surface crevasses on the penetration of the radar signal. Based on this calibration of the near-surface effects and corrections for path length, spreading and attenuation, we examine the spatial variation of bed reflectivity. Low bed reflectivity found under Engelhardt Ridge extends under the chaotic zone of the margin into fast-moving ice. We argue that the fast motion in a band along the margin is mediated by processes other than deformation of thick dilated till that is the source of lubrication allowing fast motion in the interior of the ice stream
Heat Sources within the Greenland Ice Sheet: Dissipation, Temperate Paleo-Firn and Cryo-Hydrologic Warming
Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warming in deep crevasses
Workflow for the Validation of Geomechanical Simulations through Seabed Monitoring for Offshore Underground Activities
Underground fluid storage is gaining increasing attention as a means to balance energy
production and consumption, ensure energy supply security, and contribute to greenhouse gas
reduction in the atmosphere by CO2 geological sequestration. However, underground fluid storage
generates pressure changes, which in turn induce stress variations and rock deformations. Numerical
geomechanical models are typically used to predict the response of a given storage to fluid injection
and withdrawal, but validation is required for such a model to be considered reliable. This paper
focuses on the technology and methodology that we developed to monitor seabed movements and
verify the predictions of the impact caused by offshore underground fluid storage. To this end, we put
together a measurement system, integrated into an Autonomous Underwater Vehicle, to periodically
monitor the seabed bathymetry. Measurements repeated during and after storage activities can be
compared with the outcome of numerical simulations and indirectly confirm the existence of safety
conditions. To simulate the storage system response to fluid storage, we applied the Virtual Element
Method. To illustrate and discuss our methodology, we present a possible application to a depleted
gas reservoir in the Adriatic Sea, Italy, where several underground geological formations could be
potentially converted into storage in the futur
Links Between Acceleration, Melting, and Supraglacial Lake Drainage of the Western Greenland Ice Sheet
The impact of increasing summer melt on the dynamics and stability of the Greenland Ice Sheet is not fully understood. Mounting evidence suggests seasonal evolution of subglacial drainage mitigates or counteracts the ability of surface runoff to increase basal sliding. Here, we compare subdaily ice velocity and uplift derived from nine Global Positioning System stations in the upper ablation zone in west Greenland to surface melt and supraglacial lake drainage during summer 2007. Starting around day 173, we observe speedups of 6-41% above spring velocity lasting approximately 40 days accompanied by sustained surface uplift at most stations, followed by a late summer slowdown. After initial speedup, we see a spatially uniform velocity response across the ablation zone and strong diurnal velocity variations during periods of melting. Most lake drainages were undetectable in the velocity record, and those that were detected only perturbed velocities for approximately 1 day, suggesting preexisting drainage systems could efficiently drain large volumes of water. The dynamic response to melt forcing appears to 1) be driven by changes in subglacial storage of water that is delivered in diurnal and episodic pulses, and 2) decrease over the course of the summer, presumably as the subglacial drainage system evolves to greater efficiency. The relationship between hydrology and ice dynamics observed is similar to that observed on mountain glaciers, suggesting that seasonally large water pressures under the ice sheet largely compensate for the greater ice thickness considered here. Thus, increases in summer melting may not guarantee faster seasonal ice flow
Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation
Gamma oscillations synchronized between distant neuronal populations may be critical for binding together brain regions devoted to common processing tasks. Network modeling predicts that such synchrony depends in part on the fast time course of excitatory postsynaptic potentials (EPSPs) in interneurons, and that even moderate slowing of this time course will disrupt synchrony. We generated mice with slowed interneuron EPSPs by gene targeting, in which the gene encoding the 67-kDa form of glutamic acid decarboxylase (GAD67) was altered to drive expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor subunit GluR-B. GluR-B is a determinant of the relatively slow EPSPs in excitatory neurons and is normally expressed at low levels in γ-aminobutyric acid (GABA)ergic interneurons, but at high levels in the GAD-GluR-B mice. In both wild-type and GAD-GluR-B mice, tetanic stimuli evoked gamma oscillations that were indistinguishable in local field potential recordings. Remarkably, however, oscillation synchrony between spatially separated sites was severely disrupted in the mutant, in association with changes in interneuron firing patterns. The congruence between mouse and model suggests that the rapid time course of AMPA receptor-mediated EPSPs in interneurons might serve to allow gamma oscillations to synchronize over distance
Sustained High Basal Motion of the Greenland Ice Sheet Revealed by Borehole Deformation
Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44–73% in winter, and up to 90% in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models
- …